This Article 
 Bibliographic References 
 Add to: 
Modular Architecture for High Performance Implementation of the FRR Algorithm
December 1990 (vol. 39 no. 12)
pp. 1464-1468

A novel VLSI-oriented architecture to compute the discrete Fourier transform is presented. It consists of a homogeneous structure of processing elements. The structure has a performance equal to 1/t transforms per second, where t is the time needed for the execution of a single butterfly computation or the time needed for the collection of a complete vector of samples, whichever is longer. Although the system is not optimal (it achieves O(N/sup 3/ log/sup 4/ N) area*time/sup 2/ performance), the architecture is modular and makes it possible to design a system which performs FFT of any size without any extra circuitry. Moreover, the system can provide a built-in self-test and self-restructuring. The modular system is easy to integrate. Processing elements (PEs) are connected to the neighboring PEs only, and form a linear network easy to implement in two and three dimensions. The number of pins required for a chip does not depend on the number of PEs integrated on it, nor on the size of the transform. The system consists of only one type of integrated circuit with a structure irrespective of the transform size, which considerably reduces the cost of implementation.

[1] D. Elliot and K. Rao,Fast Transforms Algorithms, Analyses, Applications. New York: Academic, 1982.
[2] J. W. Cooley and J. W. Tukey, "An algorithm for the machine computation of complex Fourier series,"Math. Comput., Apr. 1985.
[3] A. Pomerleau, M. Fourier, and H. L. Buijs, "On the design of a real-time modular FFT processor,"IEEE Trans. Circuits Syst., pp. 630- 633, Oct. 1976.
[4] G. Bongiovanni, "Two VLSI structures for the discrete Fourier transform,"IEEE Trans. Comput., vol. C-32, pp. 750-754, Aug. 1983.
[5] A. Sawai,Programmable LSI Digital Signal Processor Development, VLSI Systems and Computations, H. T. Kunget al., Eds. Rockville, MD: Computer Science Press, 1981.
[6] N. Kanopolous and P. N. Marinos, "On the architecture of a programmable, high performance single chip Fourier transform processor," inProc. Euromicro, 1984, pp. 319-325.
[7] K. Sapiecha and R. Jarocki, "Modular architecture for high performance implementation of FFT algorithm," inProc. 13th Int. Symp. Comput. Architecture, IEEE, Tokyo, 1986, pp. 261-270.
[8] R. G. Bennets,Design of Testable Logic Circuits. Reading, MA: Addison-Wesley, 1984.
[9] K. Sapiecha, "Restructuring of modular FFT architecture," inProc. XI Int. Conf. Fault Tolerant Syst. Diagnostics, Suhl, 1988, pp. 47-53.
[10] L. N. Bhuyan and D. P. Agrawal, "Performance analysis of FFT algorithms on multiprocessor systems,"IEEE Trans. Software Eng., pp. 512-521, July 1983.
[11] D. P. Agrawal, "Testing and fault tolerance of multistage interconnection networks,"IEEE Comput. Mag., Apr. 1982.
[12] C. D. Thompson, "Fourier transforms in VLSI,"IEEE Trans. Comput., pp. 1047-1057, Nov. 1983.
[13] G. Bilardi and M. Sarrafzadeh, "Optimal discrete Fourier transform in VLSI," inVLSI: Algorithms and Architectures, P. Bertolazzi and F. Luccio, Eds. New York: Elsevier North-Holland, 1985.
[14] J. Vuillemin, "A combinatorial limit to the computing power of VLSI circuits," inProc. 21st Symp. Foundations Comput. Sci., IEEE Comput. Soc., Oct. 1980, pp. 294-300.

Index Terms:
modular architecture; high performance implementation; FRR algorithm; VLSI-oriented architecture; processing elements; single butterfly computation; built-in self-test; computer architecture; computerised signal processing; fast Fourier transforms; VLSI.
K. Sapiecha, R. Jarocki, "Modular Architecture for High Performance Implementation of the FRR Algorithm," IEEE Transactions on Computers, vol. 39, no. 12, pp. 1464-1468, Dec. 1990, doi:10.1109/12.61066
Usage of this product signifies your acceptance of the Terms of Use.