
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
T.M. Carter, J.E. Robertson, "Radix16 SignedDigit Division," IEEE Transactions on Computers, vol. 39, no. 12, pp. 14241433, December, 1990.  
BibTex  x  
@article{ 10.1109/12.61063, author = {T.M. Carter and J.E. Robertson}, title = {Radix16 SignedDigit Division}, journal ={IEEE Transactions on Computers}, volume = {39}, number = {12}, issn = {00189340}, year = {1990}, pages = {14241433}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.61063}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Radix16 SignedDigit Division IS  12 SN  00189340 SP1424 EP1433 EPD  14241433 A1  T.M. Carter, A1  J.E. Robertson, PY  1990 KW  twostage algorithm; radix16 signeddigit division; normalization; design tradeoff; digital arithmetic. VL  39 JA  IEEE Transactions on Computers ER   
A twostage algorithm for fixed point, radix16 signeddigit division is presented. The algorithm uses two limited precision radix4 quotient digit selection stages to produce the full radix16 quotient digit. The algorithm requires a twodigit estimate of the (initial) partial remainder and a threedigit estimate of the divisor to correctly select each successive quotient digit. The normalization of redundant signeddigit numbers requires accommodation of some fuzziness at one end of the range of numeric values that are considered normalized. A set of general equations for determining the ranges of normalized signeddigit numbers is derived. Another set of general equations for determining the precisions of estimates of the divisor and dividend are derived. These two sets of equations permit design tradeoff analyses to be made with respect to the complexity of the model division. The specific case of a twostage radix16 signeddigit division is presented. The staged division algorithm used can be extended to other radices as long as the signeddigital number representation used has certain properties.
[1] D. E. Atkins, "Higherradix division using estimates of the divisor and partial remainders,"IEEE Trans. Comput., vol. C17, no. 10, pp. 925934, Oct. 1968.
[2] A. Avizienis, "Signeddigit number representations for fast parallel arithmetic,"IRE Trans. Electron. Comput., vol. EC10, no. 9, pp. 389400, Sept. 1961.
[3] T. M. Carter, "Cascade: Hardware for high/variable precision arithmetic," inProc. 9th Symp. Comput. Arithmetic, Santa Monica, CA, Sept. 1989, pp. 184191.
[4] T. M. Carter, "Cascade: A hardware alternative to bignums," Tech. Rep. UUCS89006, Dep. Comput. Sci., Univ. of Utah, Apr. 1989.
[5] T. M. Carter and J. E. Robertson, "Radix16 signed digit division," Tech. Rep. UUCS88004, Dep. Comput. Sci., Univ. of Utah, Mar. 1988.
[6] T. M. Carter and L. A. Hollaar, "The implementation of a radix16 digitslice using a cellular VLSI technique," inProc. ICCD 1983, Nov. 1983, pp. 688691.
[7] C. Y. F. Chow, "A variable precision processor module," inProc. IEEE Int. Conf. Comput. Design, Nov. 1983, pp. 692695.
[8] C. Y. F. Chow, "A variable precision processor module," Ph.D. dissertation, Dep. Comput. Sci., Univ. of Illinois at UrbanaChampaign, 1980.
[9] M. D. Ercegovac and T. Lang, "A division algorithm with prediction of quotient digits," inProc. 7th Symp. Comput. Arithmetic, June 1985, pp. 5156.
[10] M. D. Ercegovac and T. Lang, "An areatime efficient binary divider," inProc. IEEE Int. Conf. Comput. Design, 1987, pp. 645648.
[11] M. D. Ercegovac, "A higherradix division with simple selection of quotient digits," inProc. 6th Symp. Comput. Arithmetic, June 1983, pp. 9498.
[12] J. Fandrianto, "Algorithm for high speed shared radix 4 division and radix 4 square root," inProc. 8th Symp. Comput. Arithmetic, May 1987, pp. 7379.
[13] M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G.A. Gibson, P. M. Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S.A. Ritchie, D. A. Wood, B. G. Zom, P. N. Hilfinger, D. Hodges, R. H. Katz, J. Ousterhout, and D.A. Patterson, "SPUR: A VLSI multiprocessor workstation,"IEEE Comput. Mag., vol. 19, pp. 822, Nov. 1986.
[14] K. Hwang,Computer Arithmetic: Principles, Architecture, and Design. New York: Wiley, 1979.
[15] D. E. Knuth,The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Reading, MA: AddisonWesley, 1981.
[16] S. Kuninobuet al., "Design of high speed MOS multiplier and divider using redundant binary representation," inProc. 8th Symp. Comput. Arithmetic, May 1987, pp. 8086.
[17] D. J. Magenheimer, L. Peters, K. W. Pettis, and D. Zuras, "Integer multiplication and division on the HP precision architecture,"IEEE Trans. Comput., vol. C37, no. 8, pp. 980990, Aug. 1988.
[18] D. J. Magenheimeret al., "Integer multiplication and division on the HP precision architecture," inProc. Second Int. Conf. Architectural Support for Programming Languages Oper. Syst., Palo Alto, CA, Oct. 58, 1987, pp. 9099.
[19] H. Melenk, H. M. Möller, and W. Neun, "On Gröbner bases computation on a supercomputer using REDUCE," Preprint SC 882, Jan. 1988, FB Mathematik und Informatik der Fernuniversität Hagen, 18 pp.
[20] J. E. Robertson, "Normalization and quotient digit selection in a variable precision arithmetic unit," Rep. UIUCDCSR861229, Univ. of Illinois at UrbanaChampaign, 1986, 14 pp.
[21] J. E. Robertson, "A theory of decomposition of structures for binary addition and subtraction," Rep. UIUCDCSR811004, Univ. of Illinois at UrbanaChampaign, Jan. 1983.
[22] J. E. Robertson, "A systematic approach to the design of structures for arithmetic," inProc. 5th Symp. Comput. Arithmetic, May 1981, pp. 3541.
[23] J. E. Robertson, "Design of the combinational logic for a radix16 digitslice for a variable precision processor module," inProc. ICCD 1983, Nov. 1983, pp. 696699.
[24] J. E. Robertson, " A new class of digital division methods,"IRE Trans. Electron. Comput., vol. EC7, pp. 218222, Sept. 1958.
[25] G. S. Taylor, "Radix 16 SRT dividers with overlapped quotient selection stages," inProc. 7th Symp. Comput. Arithmetic, June 1985, pp. 6471.
[26] S.W. Thomas,Modelling Volumes Bounded by BSpline Surfaces, doctoral dissertation, Univ. of Utah, Salt Lake City, 1984.
[27] C. Tung, "A division algorithm for signeddigit arithmetic,"IEEE Trans. Comput., vol. C17, no. 9, pp. 887889, Sept. 1968.
[28] C. Tung, "Signeddigit division using combinational arithmetic nets,"IEEE Trans. Comput., vol. C19, no. 8, pp. 746748, Aug. 1970.
[29] J. L. White, "Reconfigurable, retargetable bignums: A case study in efficient, portable Lisp system building," inProc. ACM Conf. Lisp and Functional Prog., 1986, pp. 174191.