
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
C.C. Su, H.Y. Lo, "An Algorithm for Scaling and Single Residue Error Correction in Residue Number Systems," IEEE Transactions on Computers, vol. 39, no. 8, pp. 10531064, August, 1990.  
BibTex  x  
@article{ 10.1109/12.57044, author = {C.C. Su and H.Y. Lo}, title = {An Algorithm for Scaling and Single Residue Error Correction in Residue Number Systems}, journal ={IEEE Transactions on Computers}, volume = {39}, number = {8}, issn = {00189340}, year = {1990}, pages = {10531064}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.57044}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  An Algorithm for Scaling and Single Residue Error Correction in Residue Number Systems IS  8 SN  00189340 SP1053 EP1064 EPD  10531064 A1  C.C. Su, A1  H.Y. Lo, PY  1990 KW  residue number systems; single residue digit error correction; mixed radix conversion; redundant digits; lookup table; scaling error; digital signal processing; RNS; errorcorrection circuit with scaling; faulttolerant systems; digital arithmetic; digital signal processing chips; error correction; fault tolerant computing; number theory. VL  39 JA  IEEE Transactions on Computers ER   
An algorithm for scaling and single residue digit error correction is proposed. This algorithm is fully based on mixed radix conversion (MRC). The redundant digits of MRC can be used to establish a lookup table to correct single residue digit errors. By using this algorithm the error correction and scaling operation can be unified in one hardware, thereby reducing the complexity of these implementations. The scaling error e/sub s/ is analyzed and found to be limited to the interval of 1>e/sub s/>1. Since scaling is often required in the computations of digital signal processing (DSP), which is the main application of RNS, and errorcorrection circuit with scaling (ECCS) will by very efficient in the faulttolerant systems for the DSP applications. Two examples for the application of the proposed ECCS are given.
[1] F. J. Taylor, "Residue arithmetic: A tutorial with examples,"IEEE Comput. Mag., vol. 17, no. 5, pp. 5063, May 1984.
[2] A. V. Oppenheim and R. W. Schafer,Digital Signal Processing. Englewood Cliffs, NJ: PrenticeHall, 1975.
[3] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor, Eds.,Modern Applications of Residue Number System Arithmetic to Digital Signal Processing. New York: IEEE Press, 1986.
[4] T. V. Vu, "Efficient implementations of the Chinese remainder theorem for sign detection and residue decoding,"IEEE Trans. Comput., vol. C34, no. 7, pp. 646651, July 1985.
[5] F. J. Taylor and A. Sl. Ramnarayanan, "An efficient residuetodecimal converter,"IEEE Trans. Circuits Syst., vol. CAS28, no. 12, pp. 11641169, Dec. 1981.
[6] W. K. Jenkins, "Recent advances in residue number techniques for recursive digit filtering,"IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP27, no. 1, pp. 1930, Feb. 1979.
[7] B. K. Tseng, G. A. Jullien, and W. C. Miller, "Implementation of FFT structures using the residue number system,"IEEE Trans. Comput., vol. C28, no. 11, pp. 831845, Nov. 1979.
[8] G. A. Jullien, "Residue number scaling and other operations using ROM arrays,"IEEE Trans. Comput., vol. C27, no. 4, pp. 325336, Apr. 1978.
[9] N. S. Szabo and R. I. Tanaka,Residue Arithmetic and its Applications to Computer Technology. New York: McGrawHill, 1967.
[10] R. W. Watson, "Error detection and correction and other residueinteracting operations in a redundant residue number system," Ph.D. dissertation, Univ. of California, Berkeley, Jan. 6, 1965.
[11] R. W. Watson and C. W. Hastings, "Selfchecked computation using residue arithmetic,"Proc. IEEE, pp. 19201931, Dec. 1966.
[12] S. S. S. Yau and Y. C. Liu, "Error correction in redundant residue number systems,"IEEE Trans. Comput., vol. C22, pp. 511, Jan. 1973.
[13] D. Mandelbaum, "Error correction in residue arithmetic,"IEEE Trans. Comput., vol. C21, pp. 538545, June 1972.
[14] F. Barsi and P. Maestrini, "Error correcting properties of redundant residue number systems,"IEEE Trans. Comput., vol. C22, pp. 307315, Mar. 1973.
[15] F. Barsi and P. Maestrini, "Error detection and correction by product codes in residue number systems,"IEEE Trans. Comput., vol. C23, no. 9, pp. 915924, Sept. 1974.
[16] V. Ramachandran, "Single residue error correction in residue number systems,"IEEE Trans. Comput., vol. C32, pp. 504507, May 1983.
[17] W. K. Jenkins and E. J. Altman, "Selfchecking properties of residue number error checkers based on mixed radix conversion,"IEEE Trans. Circuits Syst., vol. 35, no. 2, pp. 159167, Feb. 1988.
[18] W. K. Jenkins, "Residue number system error checking using expanded projection,"Electron. Lett., vol. 18, no. 21, pp. 927928, Oct. 1982.
[19] W. K. Jenkins, "The design of error checkers for selfchecking residue number arithmetic,"IEEE Trans. Comput., vol. C32, pp. 388396, Apr. 1983.
[20] M. H. Etzel and W. K. Jenkins, "Redundant residue number systems for error detection and correction in digital filters,"IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP28, pp. 538544, Oct. 1980.
[21] R. E. Blahut,Fast Algorithms for Digital Signal Processing. Reading: MA: AddisonWesley, 1985.
[22] C. C. Su and H. Y. Lo, "An error detection circuit with scaling in residue number system," inProc. Nat. Comput. Symp., Taipei, Taiwan, R.O.C., 1989, pp. 182189.
[23] A. P. Shenoy and R. Kumaresan, "Fast base extension using a redundant modulus in RNS,"IEEE Trans. Comput., vol. 38, no. 2, pp. 292297, Feb. 1989.
[24] M. A. Soderstrand and B. Sinha, "A pipelined recursive residue number system digital filter,"IEEE Trans. Circuits Syst., vol. CAS31, pp. 415417, Apr. 1984.