
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
M.D. Ercegovac, T. Lang, "Radix4 Square Rot Without Initial PLA," IEEE Transactions on Computers, vol. 39, no. 8, pp. 10161024, August, 1990.  
BibTex  x  
@article{ 10.1109/12.57040, author = {M.D. Ercegovac and T. Lang}, title = {Radix4 Square Rot Without Initial PLA}, journal ={IEEE Transactions on Computers}, volume = {39}, number = {8}, issn = {00189340}, year = {1990}, pages = {10161024}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.57040}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Radix4 Square Rot Without Initial PLA IS  8 SN  00189340 SP1016 EP1024 EPD  10161024 A1  M.D. Ercegovac, A1  T. Lang, PY  1990 KW  redundant result; onthefly rounding; radix4 squareroot algorithm; redundant residual; division; onthefly conversion; resultdigit selection; digital arithmetic; logic arrays; number theory. VL  39 JA  IEEE Transactions on Computers ER   
A systematic derivation of a radix4 squareroot algorithm using redundant residual and result is presented. Unlike other similar schemes it does not use a table lookup or PLA for the initial step, resulting in a simpler implementation without any time penalty. The scheme can be integrated with division and incorporates an onthefly conversion and rounding of the result, thus eliminating a carrypropagate step to obtain the final result. The resultdigit selection uses 3 bits of the result and 7 bits of the estimate of the residual.
[1] L. Ciminiera and P. Montuschi, "Higher radix square rooting," Intern. Rep., Politecnico di Torino, Dipartimento di Automatica e Informatica, I.R. DAI/ARC 487, Dec. 1987.
[2] M. D. Ercegovac and T. Lang, "Onthefly conversion of redundant into conventional representations,"IEEE Trans. Comput., vol. C36, no. 7, pp. 895897, July 1987.
[3] M. D. Ercegovac and T. Lang, "Onthefly rounding for division and square root," inProc. 9th Symp. Comput. Arithmetic, 1989, pp. 169173.
[4] M. D. Ercegovac and T. Lang, "Division and square root algorithms and implementations," monograph in preparation.
[5] J. Fandrianto, "Algorithm for high speed shared radix4 division and radix4 square root," inProc. 8th Symp. Comput. Arithmetic, 1987, pp. 7379.
[6] J. B. Gosling and C. M. S. Blakeley, "Arithmetic unit with integral division and squareroot,"IEE Proc., vol. 134, pt. E, no. 1, pp. 1723, Jan. 1987.
[7] S. Kuninobuet al., "Design of high speed MOS multiplier and divider using redundant binary representation," inProc. 8th Int. Symp. Comput. Arithmetic, 1987, pp. 8086.
[8] P. Montuschi and L. Ciminiera, "On the efficient implementation of higher radix square root algorithms," inProc. 9th Symp. Comput. Arithmetic, Sept. 1989, pp. 154161.
[9] M. B. Vineberg, "A radix4 squarerooting algorithm," Rep. 182, Dep. Comput. Sci., Univ. of Illinois, UrbanaChampaign, June 1965.
[10] J. H. Zurawski and J. B. Gosling, "Design of a highspeed square root multiply and divide unit,"IEEE Trans. Comput., vol. C36, pp. 1323, Jan. 1987.