
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
M.D. Ercegovac, T. Lang, "Redundant and OnLine CORDIC: Application to Matrix Triangularization and SVD," IEEE Transactions on Computers, vol. 39, no. 6, pp. 725740, June, 1990.  
BibTex  x  
@article{ 10.1109/12.53594, author = {M.D. Ercegovac and T. Lang}, title = {Redundant and OnLine CORDIC: Application to Matrix Triangularization and SVD}, journal ={IEEE Transactions on Computers}, volume = {39}, number = {6}, issn = {00189340}, year = {1990}, pages = {725740}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.53594}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Redundant and OnLine CORDIC: Application to Matrix Triangularization and SVD IS  6 SN  00189340 SP725 EP740 EPD  725740 A1  M.D. Ercegovac, A1  T. Lang, PY  1990 KW  online CORDIC; redundant CORDIC; matrix triangularization; angles; rotations; digitserial addition; online multiplication; square root; division; scaling factors; floatingpoint representations; Givens' rotations; singular value decomposition; SVD; digital arithmetic. VL  39 JA  IEEE Transactions on Computers ER   
Several modifications to the CORDIC method of computing angles and performing rotations are presented: (1) the use of redundant (carryfree) addition instead of a conventional (carrypropagate) one; (2) a representation of angles in a decomposed form to reduce area and communication bandwidth; (3) the use of online addition (lefttoright, digitserial addition) to replace shifters by delays; and (4) the use of online multiplication, square root, and division to compute scaling factors and perform the scaling operations. The modifications improve the speed and the area of CORDIC implementations. The proposed scheme uses efficiently floatingpoint representations. The application of the modified CORDIC method to matrix triangularization by Givens' rotations and to the computation of the singular value decomposition (SVD) are discussed.
[1] H. M. Ahmed, J. M. Delosme, and M. Morf, "Highly concurrent computing structures for matrix arithmetic and signal processing,"IEEE Comput. Mag., vol. 15, no. 1, pp. 6582, Jan. 1982.
[2] H. M. Ahmed, "Signal processing algorithms and architectures," Ph.D. dissertation, Dep. Elec. Eng., Stanford Univ., 1982.
[3] D. E. Atkins, "Introduction to the role of redundancy in computer arithmetic,"IEEE Comput. Mag., pp. 7475, June 1975.
[4] A. Avizienis, "Signeddigit number representations for fast parallel arithmetic,"IEEE Trans. Electron. Comput., vol. EC10, pp. 389400, Sept. 1961.
[5] R. P. Brent, F. T. Luk, and C. F. Van Loan, "Computation of the singular value decomposition using meshconnected processors,"J. VLSI Comput. Syst., vol. 1, no. 3, pp. 242270, 1985.
[6] R. P. Brent and F. T. Luk, "The solution of singularvalue and symmetric eigenvalue problems on multiprocessor arrays,"SIAM J. Sci. Statist. Comput., vol. 6, pp. 6984, 1985.
[7] J. R. Cavallaro and F. T. Luk, "CORDIC arithmetic for an SVD processor," inProc. 8th Symp. Comput. Arithmetic, 1987, pp. 113120.
[8] L. Ciminiera, A. Serra, and A. Valenzano, "Fast and accurate matrix triangularization using an iterative array," inProc. 5th Symp. Comput. Arithmetic, 1981, pp. 215221.
[9] J. M. Delosme, "VLSI implementation of rotations in pseudoEuclidean spaces," inProc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 2, 1983, pp. 927930.
[10] E. F. Deprettere, P. Dewilde, and R. Udo, "Pipelined CORDIC architectures for fast VLSI filtering and array processing," inProc. Int. Conf. Acoust. Speech. Signal Processing (ICASSP 84), 1984, pp. 41. A.6.1.41.A.6.5.
[11] M. D. Ercegovac, "Online arithmetic: An overview," inProc. SPIE RealTime Signal Processing, 495 (VII), Aug. 1984, pp. 8693.
[12] M. D. Ercegovac and T. Lang, "Online scheme for computing rotation factors," inProc. 8th Symp. Comput. Arithmetic, 1987, pp. 196203.
[13] M. D. Ercegovac and T. Lang, "Online schemes for computing rotation factors for SVD,"Proc. SPIE, 826, Aug. 1987.
[14] M. D. Ercegovac and T. Lang, "Onthefly conversion of redundant into conventional representations,"IEEE Trans. Comput., vol. C36, no. 7, pp. 895897, July 1987.
[15] W. M. Gentleman, "Least squares computations by Givens transformations without square roots,"J. Institute Math. Appl., vol. 2, pp. 329336, 1973.
[16] W. M. Gentleman and H. T. Kung, "Matrix triangularization by systolic arrays," inProc. SPIE: Real Time Signal Processing IV, 1981, pp. 1926.
[17] G. H. Golub and C. F. Van Loan,Matrix Computations. Baltimore, MD: The John Hopkins University Press, 1983.
[18] M. J. Irwin and R. M. Owens, "Digit pipelined arithmetic as illustrated by the pasteup system,"IEEE Comput. Mag., pp. 6173, Apr. 1987.
[19] S. Kuninobuet al., "Design of highspeed MOS multiplier and divider using redundant representation," inProc. 8th Symp. Comput. Arithmetic, 1987, pp. 8086.
[20] F. T. Luk, "Architectures for computing eigenvalues and SVDs," inProc. SPIE Highly Parallel Signal Processing Architectures, vol. 614, 1986.
[21] G. Metze, "Minimal square rooting,"IEEE Trans. Electron. Comput., vol. EC14, no. 2, pp. 181185, 1965.
[22] J. E. Robertson, "A new class of digital division methods,"IEEE Trans. Electron. Comput., vol. EC7, pp. 218222, Sept. 1958.
[23] A. H. Sameh and D. J. Kuck, "On stable parallel linear solver,"J. ACM, vol. 25, pp. 8191, 1978.
[24] J. Volder, "The CORDIC trigonometric computing technique,"IRE Trans. Electron. Comput., vol. EC8, no. 3, pp. 330334, Sept. 1959.
[25] J. S. Walther, "A unified algorithm for elementary functions," inProc. AFIPS Spring Joint Comput. Conf., 1971, pp. 379385.