
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
S.J. Piestrak, "Design of HighSpeed and CostEffective SelfTesting Checkers for LowCost Arithmetic Codes," IEEE Transactions on Computers, vol. 39, no. 3, pp. 360374, March, 1990.  
BibTex  x  
@article{ 10.1109/12.48866, author = {S.J. Piestrak}, title = {Design of HighSpeed and CostEffective SelfTesting Checkers for LowCost Arithmetic Codes}, journal ={IEEE Transactions on Computers}, volume = {39}, number = {3}, issn = {00189340}, year = {1990}, pages = {360374}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.48866}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Design of HighSpeed and CostEffective SelfTesting Checkers for LowCost Arithmetic Codes IS  3 SN  00189340 SP360 EP374 EPD  360374 A1  S.J. Piestrak, PY  1990 KW  selftesting checkers; arithmetic codes; errordetecting codes; complexity; gate levels; automatic testing; digital arithmetic; error detection codes; logic circuits; logic design; logic testing. VL  39 JA  IEEE Transactions on Computers ER   
Methods for designing selftesting checkers (STCs) for arithmetic errordetecting codes are presented. First, general rules for the design of minimallevel STCs for any errordetecting code are given. The design is illustrated with STCs for 3N+B codes, 0>or=B>or=2. Then the recursive structure of both 3N+B codes and residue/inverseresidue codes with check base A=3 is revealed. The resulting design of STCs is very flexible and universal, in the sense that an iterative, costeffective, or highspeed version of the checker can be designed for either code. The design approach, unlike previous approaches for arithmetic codes, gives a unified treatment to STCs for nonseparate (3N+B) and separate (residue and inverse residue) codes. The speed and the complexity of the STC for a code from either class with n bits are about the same. Both highspeed checkers (which have up to three gate levels) and costeffective checkers are faster and require less hardware than analogous checkers proposed for 3N codes and for residue codes with A=3.
[1] D. A. Anderson and G. Metze, "Design of totally selfchecking check circuits formoutofncodes,"IEEE Trans. Comput., vol. C22, pp. 263269, Mar. 1973.
[2] M. J. Ashjaee and S. M. Reddy, "On totally selfchecking checkers for separable codes,"IEEE Trans. Comput., vol. C26, pp. 737744, Aug. 1977.
[3] A. Avizienis, "Arithmetic codes: Cost and effectiveness studies for applications in digital system design,"IEEE Trans. Comput., vol. C20, pp. 13221331, Nov. 1971.
[4] D. T. Brown, "Error detecting and correcting binary codes for arithmetic operations,"IRE Trans. Electron. Comput., vol. EC9, pp. 333337, Sept. 1960.
[5] W. C. Carter and P. R. Schneider, "Design of dynamically checked computers," inProc. IFIP Conf., Edinburgh, Scotland, Aug. 1968, pp. 878883.
[6] M. Diaz, P. Azema, and J. M. Ayache, "Unified design of selfchecking and failsafe combinational circuits and sequential machines,"IEEE Trans. Comput., vol. C28, pp. 276281, Mar. 1979.
[7] N. Gaitanis, "Totally selfchecking checker for 3Narithmetic codes,"Electron. Lett., vol. 19, no. 17, pp. 685686, Aug. 18, 1983.
[8] N. Gaitanis, "Totally selfchecking checkers for lowcost arithmetic codes,"IEEE Trans. Comput., vol. C34, pp. 596601, July 1985.
[9] H. L. Garner, "Error codes for arithmetic operations,"IEEE Trans. Electron. Comput., vol. EC15, pp. 763770, Oct. 1966.
[10] W. W. Peterson, "On checking an adder,"IBM J. Res. Develop., vol. 2, pp. 266268, Apr. 1958.
[11] S. J. Piestrak, "PLA implementations of totally selfchecking circuits usingmoutofncodes," inProc. ICCD'85 Int. Conf. Comput. Design: VLSI Comput., Port Chester, NY, Oct. 13, 1985, pp. 777781.
[12] S. J. Piestrak, "Efficient highspeed modulo3 generator," submitted for publication.
[13] I. L. Sayers and D. J. Kinniment, "Lowcost residue codes and their application to selfchecking VLSI systems,"IEE Proc., vol. 132, part E, pp. 197202, July 1985.
[14] I. L. Sayers, D. J. Kinniment, and E. G. Chester, "Design of reliable and selftesting VLSI datapath using residue coding techniques,"IEE Proc., vol. 133, part E, pp. 169179, May 1986.
[15] F. F. Sellers, Jr., M.Y. Hsiao, and L. W. Bearnson,Error Detecting Logic for Digital Computers. New York: McGrawHill, 1968.
[16] J. E. Smith, "The design of totally selfchecking check circuits for a class of unordered codes,"J. Des. Automat. FaultTolerant Comput., vol. 2, pp. 321342, Oct. 1977.
[17] D. L. Tao, P. K. Lala, and C. R. P. Hartmann, "A concurrent testing strategy for PLAs," inProc. 1986 Int. Test Conf., Philadelphia, PA, Sept. 811, 1986, pp. 705709.
[18] J. Wakerly,Error Detecting Codes, SelfChecking Circuits and Applications. New York: NorthHolland, 1978.
[19] T. Nanya and Y. Tohma, "A 3level realization of totally selfchecking checkers formoutofncodes," inDig. Papers 13th Int. FTC Symp., Milan, Italy, June 2830, 1983, pp. 173176.