The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - February (1990 vol.39)
pp: 282-287
ABSTRACT
<p>A universal lower-bound technique for the size and other implementation characteristics of an arbitrary Boolean function as a decision tree and as a two-level AND/OR circuit is derived. The technique is based on the power spectrum coefficients of the n dimensional Fourier transform of the function. The bounds vary from constant to exponential and are tight in many cases. Several examples are presented.</p>
INDEX TERMS
spectral lower bound technique; decision trees; two-level AND/OR circuits; arbitrary Boolean function; power spectrum coefficients; n dimensional Fourier transform; Boolean functions; Fourier transforms; logic circuits; trees (mathematics).
CITATION
Y. Brandman, A. Orlitsky, J. Hennessy, "A Spectral Lower Bound Technique for the Size of Decision Trees and Two-Level AND/OR Circuits", IEEE Transactions on Computers, vol.39, no. 2, pp. 282-287, February 1990, doi:10.1109/12.45216
35 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool