This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Computing the Singular Value Decomposition on the Connection Machine
January 1990 (vol. 39 no. 1)
pp. 152-155

Consideration is given to the computation of the singular value decomposition (SVD) on the Connection Machine (CM). Brief descriptions of the Lisp language and some typical matrix manipulating functions are given. Implementation details of various Jacobi-SVD algorithms on an 8192-processor CM are presented. For n*n matrices, where n>or=64, the decomposition is computed in time O(n) per sweep.

[1] M. Annaratone, E. Arnould, H. T. Kung, and O. Menzilcioglu, "Using Warp as a supercomputer in signal processing," inProc, 1986 IEEE Int. Conf. ASSP, 1986, pp. 2895-2898.
[2] R. P. Brent and F. T. Luk, "The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays,"SIAM J. Sci. Statist. Comput., vol. 6, pp. 69-84, 1985.
[3] R. P. Brent, F. T. Luk, and C. Van Loan, "Computation of the singular value decomposition using mesh-connected processors,"J. VLSI Comput. Syst., vol. 1, pp. 250-260, 1985.
[4] P. P. M. de Rijk, "A one-sided Jacobi algorithm for computing the singular value decomposition on a vector computer,"SIAM J. Sci. Statist. Comput., vol. 10, pp. 359-371, 1989.
[5] P. J. Eberlein, "The parallel solution of eigenproblems on multiprocessor systems,"Proc. SPIE, Vol. 826, Advanced Algorithms and Architectures for Signal Processing II, pp. 146-151, 1987.
[6] L. M. Ewerbring, F. T. Luk, and A. H. Ruttenberg, "Matrix computations on the Connection Machine," inProc. 21st Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, 1987, pp. 302-306.
[7] D. Foulser and R. Scheiber, "The Saxpy Matrix-1: A General-Purpose Systolic Computer,"Computer, Vol. 20, No. 7, July 1987, pp. 35-43.
[8] G. H. Golub and C. Reinsch, "Singular value decomposition and least squares solutions,"Numer. Math., vol. 14, pp. 403-420, 1970.
[9] M. R. Hestenes, "Inversion of matrices by biorthogonalization and related results,"J. Soc. Indust. Appl. Math., vol. 6, pp. 51-90, 1958.
[10] E. Kogbetliantz, "Solution of linear equations by diagonalization of coefficient matrices,"Quart. Appl. Math., vol. 13, pp. 123-132, 1955.
[11] F. T. Luk, "Computing the singular-value decomposition on the ILLIAC IV,"ACM Trans. Math. Software, vol. 6, pp. 524-539, 1980.
[12] F. T. Luk, "A triangular processor array for computing singular values,"Lin. Alg. Appl., vol. 77, pp. 259-273, 1986.
[13] F. T. Luk and H. Park, "A proof of convergence for two parallel Jacobi SVD algorithms,"IEEE Trans. Comput., vol. 38, pp. 806-811, June 1989.
[14] U. Meier and A. Sameh, "Numerical linear algebra on the CEDAR multiprocessor,"Proc. SPIE, Vol. 826, Advanced Algorithms and Architectures for Signal Processing II, 1987, pp. 2-9.
[15] J. J. Modi and J. D. Pryce, "Efficient implementation of Jacobi's diagonalization method on the DAP,"Numer. Math., vol. 46, pp. 443-454, 1985.
[16] Thinking Machines Corporation, "Connection Machine Model CM- 2 technical summary," Thinking Machines Tech. Rep. HA87-4, Apr. 1987.
[17] C. Van Loan, "The block Jacobi method for computing the singular value decomposition," Rep. 85-680, Dept. Comput. Sci., Cornell Univ., 1986.

Index Terms:
singular value decomposition; Connection Machine; computation; matrix manipulating functions; Jacobi-SVD algorithms; mathematics computing; matrix algebra.
Citation:
L.M. Ewerbring, F.T. Luk, "Computing the Singular Value Decomposition on the Connection Machine," IEEE Transactions on Computers, vol. 39, no. 1, pp. 152-155, Jan. 1990, doi:10.1109/12.46294
Usage of this product signifies your acceptance of the Terms of Use.