
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
B. Parhami, "Generalized SignedDigit Number Systems: A Unifying Framework for Redundant Number Representations," IEEE Transactions on Computers, vol. 39, no. 1, pp. 8998, January, 1990.  
BibTex  x  
@article{ 10.1109/12.46283, author = {B. Parhami}, title = {Generalized SignedDigit Number Systems: A Unifying Framework for Redundant Number Representations}, journal ={IEEE Transactions on Computers}, volume = {39}, number = {1}, issn = {00189340}, year = {1990}, pages = {8998}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.46283}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Generalized SignedDigit Number Systems: A Unifying Framework for Redundant Number Representations IS  1 SN  00189340 SP89 EP98 EPD  8998 A1  B. Parhami, PY  1990 KW  generalised signeddigit number systems; unifying framework; redundant number representations; carry; borrow; fast propagationfree addition; subtraction; digital arithmetic. VL  39 JA  IEEE Transactions on Computers ER   
Signeddigit (SD) number representation systems have been defined for any radix r≤3 with digit values ranging over the set ( alpha , . . ., 1, 0, 1, . . ., alpha ), where alpha is an arbitrary integer in the range 1/2r> alpha >r. Such number representation systems possess sufficient redundancy to allow for the annihilation of carry or borrow chains and hence result in fast propagationfree addition and subtraction. The author refers to the above as ordinary SD number systems and defines generalized SD number systems which contain them as a special symmetric subclass. It is shown that the generalization not only provides a unified view of all redundant number systems which have proven useful in practice (including storedcarry and storedborrowed systems), but also leads to new number systems not examined before. Examples of such new number systems are storedcarryorborrow systems, storeddoublecarry systems, and certain redundant decimal representations.
[1] S. F. Andersonet al., "The IBM System/360 Model 91: Floatingpoint execution unit,"IBM J. Res. Develop., pp. 3453, Jan. 1967.
[2] A. Avizienis, "Signeddigit number representation for fast parallel arithmetic,"IRE Trans. Comput., vol. EC10, pp. 389400, 1961.
[3] A. Avizienis, "On a flexible implementation of digital computer arithmetic," inInform. Processing '62. Amsterdam: NorthHolland, 1963, pp. 664670.
[4] A. Avizienis, "Binarycompatible signeddigit arithmetic," inAFIPS Conf. Proc. (1964 Fall Joint Comput. Conf.), pp. 663672.
[5] A. Avizienis, "Arithmetic error codes: Cost and effectiveness studies for applications in digital system design,"IEEE Trans. Comput., vol. C 20, no. 11, pp. 13221331, Nov. 1971.
[6] A. D. Booth, "A signed binary multiplication technique,"Quarterly J. Mech. Appl. Math., vol. 4, part 2, pp. 236240, 1951.
[7] T. C. Chen, "Maximal redundancy signeddigit systems," inProc. Symp. Comput. Arithmetic, Urbana, IL, June 1985, IEEE Computer Society Press, pp. 296300.
[8] C. Y. Chow and J. E. Robertson, "Logical design of a redundant binary adder," inProc. Symp. Comput. Arithmetic, Santa Monica, CA, Oct. 1978, pp. 109115.
[9] L. J. Guibas and F. M. Liang, "Systolic stacks, queues, and counters," inProc. Conf. Advanced Res. VLSI, MIT, 1982, pp. 155164.
[10] L. B. Jackson,Digital Filters and Signal Processing. Boston, MA: Kluwer, 1986.
[11] R. W. Hockney and C. R. Jesshope,Parallel Computers. Bristol, England: Adam Hilger, 1981.
[12] D. E. Knuth,The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Reading, MA: AddisonWesley, 1981.
[13] S.Y. Kung, R. E. Owen, and J. G. Nash, Eds.,VLSI Signal Processing II. New York: IEEE Press, 1986.
[14] O. L. MacSorley, "Highspeed arithmetic in binary computers,"Proc. IRE, vol. 49, pp. 6791, Jan. 1961.
[15] N. Metropolis and R. L. Ashenhurst, "Significant digit computer arithmetic,"IRE Trans. Electron. Comput., vol. EC7, pp. 265 267, 1958.
[16] G. Metze and J. E. Robertson, "Elimination of carry propagation in digital computers," inInform. Processing '59 (Proc. UNESCO Conf., June 1959), 1960, pp. 389396.
[17] B. Parhami and A. Avizienis, "Detection of storage errors in mass memories using lowcost arithmetic error codes,"IEEE Trans. Comput., vol. C27, no. 4, pp. 302308, Apr. 1978.
[18] B. Parhami, "Systolic up/down counters with zero and sign detection," inProc. Symp. Comput. Arithmetic, Como, Italy, May 1987, pp. 174178.
[19] B. Parhami, "A general theory of carryfree and limitedcarry computer arithmetic," inProc. Canadian Conf. VLSI, Winnipeg, Canada, Oct. 1987, pp. 167172.
[20] B. Parhami, "Carryfree addition of recoded binary signeddigit numbers,"IEEE Trans. Comput., pp. 14701476, Nov. 1988.
[21] B. Parhami, "On the practical implementation of arithmetic functions with generalized signeddigit number representation," submitted for publication.
[22] J. E. Robertson, "A new class of digital division methods,"IEEE Trans. Comput., vol. C7, pp. 218222, Sept. 1958.
[23] N. Takagi, H. Yasuura, and S. Yajima, "Highspeed VLSI multiplication algorithm with a redundant binary addition tree,"IEEE Trans. Comput., vol. C34, no. 9, pp. 789796, Sept. 1985.
[24] K. D. Tocher, "Technique for multiplication and division for automatic binary computers,"Quarterly J. Mech. Appl. Math., vol. 11, part 3, pp. 364384, 1958.
[25] C. S. Wallace, "A suggestion for a fast multiplier,"IEEE Trans. Electron. Comput., vol. EC14, no. 1, pp. 1417, Feb. 1964.
[26] V. Zakharov, "Parallelism and array processing,"IEEE Trans. Comput., vol. C33, no. 1, pp. 4578, Jan. 1984.