
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
R.R. Muntz, E. De Souza e Silva, A. Goyal, "Bounding Availability of Repairable Systems," IEEE Transactions on Computers, vol. 38, no. 12, pp. 17141723, December, 1989.  
BibTex  x  
@article{ 10.1109/12.40849, author = {R.R. Muntz and E. De Souza e Silva and A. Goyal}, title = {Bounding Availability of Repairable Systems}, journal ={IEEE Transactions on Computers}, volume = {38}, number = {12}, issn = {00189340}, year = {1989}, pages = {17141723}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.40849}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Bounding Availability of Repairable Systems IS  12 SN  00189340 SP1714 EP1723 EPD  17141723 A1  R.R. Muntz, A1  E. De Souza e Silva, A1  A. Goyal, PY  1989 KW  repairable systems; Markov models; availability; statespace cardinalities; approximation technique; steadystate availability; bounds; error; fault tolerant computing; Markov processes; reliability theory. VL  38 JA  IEEE Transactions on Computers ER   
[1] S. Berson, E. de Souza e Silva, and R. R. Muntz, "An object oriented methodology for the specification of Markov models," UCLA Tech. Rep. CSD870030, June 1987 (revised Feb. 1988).
[2] J. A. Carrasco and J. Figueras, "METFAC: Design and implementation of a software toll for modeling and evaluation of complex faulttolerant computing systems," inProc. FTCS16, July 1986, pp. 424429.
[3] A. E. Conway and A. Goyal, "Monte Carlo simulation of computer system availability/reliability models," inProc. FTCS17, 1987.
[4] A. Costes, J. E. Doucet, C. Landrault, and J. C. Laprie, "SURF: A program for dependability evaluation of complex faulttolerant computing systems," inProc. FTCS11, June 1981, pp. 7278.
[5] P.J. Courtois,Decomposability: Queueing and Computer System Application. New York: Academic, 1977.
[6] P.J. Courtois and P. Semal, "Bounds for the positive eigenvectors of nonnegative matrices and their approximations by decomposition,"J. ACM, vol. 31, no. 4, 1984, pp. 804825.
[7] P. J. Courtois and P. Semal, "Computable bounds on conditional steadystate probabilities in large markov chains and queueing models,"IEEE J. Select. Areas Commun., vol. 4, no. 6, pp. 926937, Sept. 1986.
[8] P.J. Courtois and P. Semal, "Bounds on conditional steadystate distributions in large Markovian and queueing models," inTeletraffic Analysis and Computer Performance Evaluation, O. J. Boxma, J. W. Cohen, and H. C. Tijms, Eds. New York: North Holland, 1986.
[9] E. de Souza e Silva and H. R. Gail, "Calculating cumulative operational time distributions of repairable computer systems,"IEEE Trans. Comput., vol. C35, pp. 322332, 1986.
[10] D. D. Dimitrijevic and M.S. Chen, "An integrated algorithm for probabilistic protocol verification and evaluation," IBM Res. Rep. RC 13901 (#62470), p. 19, Aug. 4, 1988.
[11] R. Geist and K. S. Trivedi, "Ultrahigh reliability prediction for faulttolerant computer systems,"IEEE Trans. Comput., vol. C32, no. 12, pp. 11181127, Dec. 1985.
[12] A. Goyal, "System availability estimator (SAVE)," IBM Res. Rep. RC 12517 (#56267) p. 37, Feb. 18, 1987.
[13] A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Lavenberg, and K. S. Trivedi, "The system availability estimator," inProc. FTCS16, Vienna, Austria, July 1986, pp. 8489.
[14] A. Goyal, S. S. Lavenberg, and K. S. Trivedi, "Probabilistic modeling of computer system availability,"Ann. Oper. Res., vol. 8, pp. 285306, 1986.
[15] D. Gross and D. R. Miller, "The randomization technique as a modeling tool and solution procedure for transient Markov processes,"Oper. Res., vol. 32, no. 2, pp. 343361, 1984.
[16] P. Heidelberger and A. Goyal, "Sensitivity analysis of continuous time Markov chains using uniformization," inProc. 2nd Int. Workshop Appl. Math. Perform. Reliability Models Comput. Commun. Syst., Rome, Italy, May 1987.
[17] K. B. Irani and V. L. Wallace, "On network linguistics and the conversational design of queueing networks,"J. ACM, vol. 18, no. 4, pp. 616629, Oct. 1971.
[18] E. E. Lewis and F. Bohm, "Monte Carlo simulation of Markov unreliability models,"Nucl. Eng. Design, vol. 77, no. 1, pp. 4962, 1984.
[19] S. V. Makam and A. Avizienis, "ARIES 81: A reliability and lifecycle evaluation tool for fault tolerant systems," inProc. FTCS12, June 1982, pp. 276274.
[20] B. Plateau, "On the stochastic structure of parallelism and synchronization models for distributed algorithms, " inProc. ACM Sigmetrics Conf. Measurement and Modeling of Comput. Syst. (Austin, TX), Aug. 1985.
[21] A. Reibman and K. S. Trivedi, "Numerical transient analysis of Markov models,"Comput. Oper. Res., vol. 15, no. 1, pp. 1936, 1988.
[22] P. Semal and P.J. Courtois, "Stability analysis of large Markov chains,"Performance '87, pp. 363382, 1988.
[23] G.W. Stewart, "Computable error bounds for aggregated Markov chains,"J. ACM, pp. 271285, 1983.
[24] W. J. Stewart and A. Goyal, "Matrix methods in large dependability models," IBM Res. Rep. RC 11485, IBM T. J. Watson Res. Center, 1985.
[25] K. S. Trivedi,Probability and Statistics with Reliability, Queueing and Computer Science Applications. Englewood Cliffs, NJ: PrenticeHall, 1982.
[26] K. S. Trivedi, and J. B. Dugan, "Hybrid reliability modeling of faulttolerant computer systems,"Comput. Elec. Eng., vol. 11, no. 23, 1984.