This Article 
 Bibliographic References 
 Add to: 
On Iterative Arrays for the Euclidean Algorithm Over Finite Fields
October 1989 (vol. 38 no. 10)
pp. 1473-1478
Iterative arrays are described which implement the extended Euclidean algorithm over finite fields with characteristic two and are designed to have throughputs in the area of hundreds of megabits per second. A special form of the Euclidean algorithm is the basis of these arrays, which can be used for error decoding. The propagation time through the array is derived as a function of the degree o

[1] R. P. Brent and H. T. Kung, "Systolic VLSI arrays for polynomial GCD computation,"IEEE Trans. Comput., vol. C-33, no. 8, pp. 731-736, Aug. 1984.
[2] K. Hwang,Computer Arithmetic. New York: Wiley, 1979.
[3] Y. Sugiyama, M. Kasahari, S. Hirasawa, and T. Namekawa, "A method for solving key equation for decoding Goppa codes,"Inform. Contr., vol. 29, pp. 173-180, 1975.
[4] E. R. Berlekamp,Algebraic Coding Theory. New York: McGraw-Hill, 1968.
[5] R. E. Blahut,Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley, 1983.
[6] R. E. Blahut, "A universal Reed-Solomon decoder,"IBM J. Res Develop., vol. 28, pp. 150-158, 1984.
[7] I-S. Hu, I. S. Reed, T. R. Truong, K. Wang, C. S. Yeh, and L. J. Deutsch, "The VLSI implementation of a Reed-Solomon encoder using Berlekamp's bit-serial multiplier algorithm,"IEEE Trans. Comput., vol. C-33, pp. 906-911, Oct. 1984.

Index Terms:
iterative arrays; Euclidean algorithm; finite fields; error decoding; decoding; error correction codes.
D.M. Mandelbaum, "On Iterative Arrays for the Euclidean Algorithm Over Finite Fields," IEEE Transactions on Computers, vol. 38, no. 10, pp. 1473-1478, Oct. 1989, doi:10.1109/12.35844
Usage of this product signifies your acceptance of the Terms of Use.