This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Parallel Random Number Generation for VLSI Systems Using Cellular Automata
October 1989 (vol. 38 no. 10)
pp. 1466-1473
A novel random number generation (RNG) architecture of particular importance in VLSI for fine-grained parallel processing is proposed. It is demonstrated that efficient parallel pseudorandom sequence generation can be accomplished using certain elementary one-dimensional cellular automata (two binary states per site and only nearest-neighbor connections). The pseudorandom numbers appear in para

[1] P. D. Hortensius, "Parallel computation of non-deterministic algorithms in VLSI," Ph.D. dissertation, Univ. of Manitoba, Winnipeg, Canada, 1987, unpublished.
[2] P. D. Hortensius, H. C. Card, R. D. McLeod, and W. Pries, "Importance sampling for Ising computers using one-dimensional cellular automata,"IEEE Trans. Comput., vol. 38, pp. 769-774, June 1989.
[3] P. D. Hortensius, H. C. Card, and R. D. McLeod, "CMOS implementations of Ising computers," inProc. 1986 Canadian VLSI Conf., Montreal, P.Q., Canada, Oct. 1986, pp. 127-132.
[4] P. D. Hortensius, R. D. Mcleod, W. Pries, D. M. Miller, and H. C. Card, "Cellular automata based pseudorandom number generators for built-in self-test,"IEEE Trans. Comput.-Aided Design, vol. 8, no 8, pp. 842-59, Aug. 1989.
[5] D. Knuth,Seminumerical Algorithms. Reading, MA: Addison Wesley, 1981.
[6] R. R. Coveyou and R. D. MacPherson, "Fourier analysis of uniform random number generators,"J. ACM, vol. 14, pp. 100-119, 1967.
[7] G. Marsaglia, "The structure of linear congruential sequences," inApplication of Number Theory to Numerical Analysis, S. K. Zaremba, Ed. New York: Academic, 1972.
[8] G. S. Fishman and L. R. Moore, "A statistical evaluation of multiplicative congruential random number generators with modulus 231- 1,"J. Amer. Statist. Ass., vol. 77, no. 377, pp. 129-136, Mar. 1982
[9] R. C. Tausworthe, "Random numbers generated by linear recurrance modulo two,"Math. Computat., vol. 19, pp. 201-209, 1965.
[10] S. Wolfram, "Statistical mechanics of cellular automata,"Rev. Modern Phys., vol. 55, pp. 601-644, 1983.
[11] S. Wolfram, "University and complexity in cellular automata,"Physica, vol. 10D, pp. 1-35, 1984.
[12] S. Wolfram, "Origins of randomness in physical systems,"Phys. Rev. Lett., vol. 55, pp. 449-452, 1985.
[13] S. Wolfram, "Random sequence generation by cellular automata,"Advances Appl. Math., vol. 7, pp. 127-169, 1986.
[14] T. W. Williams and K. P. Parker, "Design for testability--A survey,"Proc.IEEE, vol. 71, pp. 98-112, 1983.
[15] W. Pries, A. Thanailakis, and H. C. Card, "Group properties of cellular automata and VLSI applications,"IEEE Trans. Comput., vol. C-35, pp. 1013-1024, Dec. 1986.
[16] S. Kirkpatrick and E. P. Stoll, "A very fast shift-register sequence random number generator," J. Computat. Phys., vol. 40, pp. 517- 526, 1981.

Index Terms:
random number generation; VLSI systems; cellular automata; parallel processing; pseudorandom numbers; finite automata; parallel architectures; random number generation.
Citation:
P.D. Hortensius, R.D. McLeod, H.C Card, "Parallel Random Number Generation for VLSI Systems Using Cellular Automata," IEEE Transactions on Computers, vol. 38, no. 10, pp. 1466-1473, Oct. 1989, doi:10.1109/12.35843
Usage of this product signifies your acceptance of the Terms of Use.