This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Systolic Gaussian Elimination Over GF(p) with Partial Pivoting
September 1989 (vol. 38 no. 9)
pp. 1321-1324
A systolic architecture is proposed for the triangularization by means of the Gaussian elimination algorithm of large dense n*n matrices over GF(p), where p is a prime number. The solution of large dense linear systems over GF(p) is the major computational step in various algorithms issuing from arithmetic number theory and computer algebra. The proposed architecture implements the elimination

[1] H. M. Ahmed, J. M. Delosme, and M. Morf, "Highly concurrent computing structures for matrix arithmetic and signal processing,"IEEE Computer, vol, 15, pp. 65-82, 1982.
[2] F. Andre, P. Frison, and P. Quinton, "Algorithmes systoliques: de la théorieàla pratique," IRISA Res. Rep. 214, May 1983.
[3] G. R. Blakley, "A computer algorithm for computing the productABmoduloM,"IEEE Trans. Comput., vol. 32, no. 4, pp. 497-500, 1983.
[4] A. Bojanczyk, R. P. Brent, and H. T. Kung, "Numerically stable solution of dense systems of linear equations using mesh-connected processors," Tech. Rep. Carnegie-Mellon Univ., 1981.
[5] H. Y. H. Chuang and G. He, "Design of problem-size independent systolic arrays systems," inProc. IEEE Int. Conf. ICCD'84, Port Chester, New York, 1984, pp. 152-156.
[6] M. Cosnard, Y. Robert, and M. Tchuente, "Matching parallel algorithms with architectures: A case study," IFIP Working Conf. Highly Parallel Computers, Nice, France, Mar. 24-26, 1986.
[7] W. M. Gentleman and H. T. Kung, "Matrix triangularisation by systolic arrays," inProc. SPIE 298, Real-time Signal Processing IV, San Diego, CA, 1981, pp. 19-26.
[8] D. Heller, "Partitioning big matrices for small systolic arrays," inVLSI and Modern Signal Processing, S. Y. Kunget al.Eds. Englewood Cliffs, NJ: Prentice-Hall, 1985, pp. 185-199.
[9] B. Hochet, P. Quinton, and Y. Robert, "Systolic solution of linear systems with partial pivoting," inProc. IEEE Int. Conf. Computer Arithmetic, May 1987, Como, Italy.
[10] K. Hwang and Y. H. Cheng, "Partitioned matrix algorithm for VLSI arithmetic systems,"IEEE Trans. Comput., vol. C-31, no. 12, pp. 1215-1224, 1982.
[11] H. T. Kung, "Why systolic architectures,"IEEE Computer, vol. 15, no. 1, pp. 37-46, 1982.
[12] H. T. Kung and M. S. Lam, "Fault-tolerance and two-level pipelining in VLSI systolic arrays,"J. Parallel Distrib. Comput., vol. 1, no. 1, pp. 32-63, 1984.
[13] H. T. Kung and C. E. Leiserson, "Systolic arrays for (VLSI)," inProc. Symp. Sparse Matrices Computations, I.S. Duff et al., Eds, Knoxville, TN, 1978, pp. 256-282.
[14] D. E. Knuth,The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Reading, MA: Addison-Wesley, 1981.
[15] J. Makhoul, "Linear prediction: A tutorial review,"Proc. IEEE, vol. 63, no. 4, pp. 561-580, 1975.
[16] M. A. Morrison and J. Brillhart, "A method of factoring and the factorization ofF7,"Math Comput., vol. 29, pp. 183-205, 1975.
[17] D. Parkinson and M. Wunderlich, "A compact algorithm for Gaussian elimination overGF(2) implemented on highly parallel computers,"Parallel Comput., vol. 1, pp. 65-73, 1984.
[18] R. Poet, "The design of special purpose hardware to factor large integers,"Comput. Phys. Commun., vol. 37, pp. 337-341, 1985.
[19] Y. Robert and M. Tchuente, "Résolution systolique de systèmes linéaires denses,"RAIRO Modélisation et Analyse Numérique, vol. 19, no. 2, pp. 315-326, 1985.
[20] Y. Robert and D. Trystram, "Un réseau systolique orthogonal pour le problème du chemin algébrique," C.R.A.S. Paris, 302, I, 6, pp. 241- 244, 1986.
[21] R. Schreiber and P. Kuekes, "Systolic linear algebra machines in digital signal processing," inVLSI and Modern Signal Processing, S. Y. Kunget al., Eds. Englewood Cliffs, NJ: Prentice-Hall, 1985.

Index Terms:
systolic Gaussian elimination; partial pivoting; systolic architecture; triangularization; prime number; large dense linear systems; arithmetic number theory; computer algebra; digital arithmetic; number theory; parallel architectures.
Citation:
B. Hochet, P. Quinton, Y. Robert, "Systolic Gaussian Elimination Over GF(p) with Partial Pivoting," IEEE Transactions on Computers, vol. 38, no. 9, pp. 1321-1324, Sept. 1989, doi:10.1109/12.29471
Usage of this product signifies your acceptance of the Terms of Use.