
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
B. Hochet, P. Quinton, Y. Robert, "Systolic Gaussian Elimination Over GF(p) with Partial Pivoting," IEEE Transactions on Computers, vol. 38, no. 9, pp. 13211324, September, 1989.  
BibTex  x  
@article{ 10.1109/12.29471, author = {B. Hochet and P. Quinton and Y. Robert}, title = {Systolic Gaussian Elimination Over GF(p) with Partial Pivoting}, journal ={IEEE Transactions on Computers}, volume = {38}, number = {9}, issn = {00189340}, year = {1989}, pages = {13211324}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.29471}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Systolic Gaussian Elimination Over GF(p) with Partial Pivoting IS  9 SN  00189340 SP1321 EP1324 EPD  13211324 A1  B. Hochet, A1  P. Quinton, A1  Y. Robert, PY  1989 KW  systolic Gaussian elimination; partial pivoting; systolic architecture; triangularization; prime number; large dense linear systems; arithmetic number theory; computer algebra; digital arithmetic; number theory; parallel architectures. VL  38 JA  IEEE Transactions on Computers ER   
[1] H. M. Ahmed, J. M. Delosme, and M. Morf, "Highly concurrent computing structures for matrix arithmetic and signal processing,"IEEE Computer, vol, 15, pp. 6582, 1982.
[2] F. Andre, P. Frison, and P. Quinton, "Algorithmes systoliques: de la théorieàla pratique," IRISA Res. Rep. 214, May 1983.
[3] G. R. Blakley, "A computer algorithm for computing the productABmoduloM,"IEEE Trans. Comput., vol. 32, no. 4, pp. 497500, 1983.
[4] A. Bojanczyk, R. P. Brent, and H. T. Kung, "Numerically stable solution of dense systems of linear equations using meshconnected processors," Tech. Rep. CarnegieMellon Univ., 1981.
[5] H. Y. H. Chuang and G. He, "Design of problemsize independent systolic arrays systems," inProc. IEEE Int. Conf. ICCD'84, Port Chester, New York, 1984, pp. 152156.
[6] M. Cosnard, Y. Robert, and M. Tchuente, "Matching parallel algorithms with architectures: A case study," IFIP Working Conf. Highly Parallel Computers, Nice, France, Mar. 2426, 1986.
[7] W. M. Gentleman and H. T. Kung, "Matrix triangularisation by systolic arrays," inProc. SPIE 298, Realtime Signal Processing IV, San Diego, CA, 1981, pp. 1926.
[8] D. Heller, "Partitioning big matrices for small systolic arrays," inVLSI and Modern Signal Processing, S. Y. Kunget al.Eds. Englewood Cliffs, NJ: PrenticeHall, 1985, pp. 185199.
[9] B. Hochet, P. Quinton, and Y. Robert, "Systolic solution of linear systems with partial pivoting," inProc. IEEE Int. Conf. Computer Arithmetic, May 1987, Como, Italy.
[10] K. Hwang and Y. H. Cheng, "Partitioned matrix algorithm for VLSI arithmetic systems,"IEEE Trans. Comput., vol. C31, no. 12, pp. 12151224, 1982.
[11] H. T. Kung, "Why systolic architectures,"IEEE Computer, vol. 15, no. 1, pp. 3746, 1982.
[12] H. T. Kung and M. S. Lam, "Faulttolerance and twolevel pipelining in VLSI systolic arrays,"J. Parallel Distrib. Comput., vol. 1, no. 1, pp. 3263, 1984.
[13] H. T. Kung and C. E. Leiserson, "Systolic arrays for (VLSI)," inProc. Symp. Sparse Matrices Computations, I.S. Duff et al., Eds, Knoxville, TN, 1978, pp. 256282.
[14] D. E. Knuth,The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Reading, MA: AddisonWesley, 1981.
[15] J. Makhoul, "Linear prediction: A tutorial review,"Proc. IEEE, vol. 63, no. 4, pp. 561580, 1975.
[16] M. A. Morrison and J. Brillhart, "A method of factoring and the factorization ofF7,"Math Comput., vol. 29, pp. 183205, 1975.
[17] D. Parkinson and M. Wunderlich, "A compact algorithm for Gaussian elimination overGF(2) implemented on highly parallel computers,"Parallel Comput., vol. 1, pp. 6573, 1984.
[18] R. Poet, "The design of special purpose hardware to factor large integers,"Comput. Phys. Commun., vol. 37, pp. 337341, 1985.
[19] Y. Robert and M. Tchuente, "Résolution systolique de systèmes linéaires denses,"RAIRO Modélisation et Analyse Numérique, vol. 19, no. 2, pp. 315326, 1985.
[20] Y. Robert and D. Trystram, "Un réseau systolique orthogonal pour le problème du chemin algébrique," C.R.A.S. Paris, 302, I, 6, pp. 241 244, 1986.
[21] R. Schreiber and P. Kuekes, "Systolic linear algebra machines in digital signal processing," inVLSI and Modern Signal Processing, S. Y. Kunget al., Eds. Englewood Cliffs, NJ: PrenticeHall, 1985.