This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Fault Detection in Combinational Networks by Reed-Muller Transforms
June 1989 (vol. 38 no. 6)
pp. 788-797
A new approach for fault detection in combinational networks based on Reed-Muller (RM) transforms is presented. An upper bound on the number of RM spectral coefficients required to be verified for detection of multiple stuck-at-faults and single bridging faults at the input lines of an n-input network is shown to be n. The time complexity (time required to test a network) for detection of multi

[1] D. M. Miller and J. C. Muzio, "Spectral techniques for fault detection," inProc. 12th Int. Symp. Fault Tolerant Comput., 1982, pp. 152-158.
[2] D. M. Miller and J. C. Muzio, "Spectral fault signatures for internally unate combinational networks,"IEEE Trans. Comput., vol. C-32, pp. 1058-1062, 1983.
[3] D. M. Miller and J. C. Muzio, "Spectral fault signatures for single stuck-at-faults in combinational networks,"IEEE Trans. Comput., vol. C-33, pp. 765-769, 1984.
[4] A. K. Susskind, "Testing by verifying Walsh coefficients,"IEEE Trans. Comput., vol. C-32, pp. 198-201, 1983.
[5] S. M. Reddy, "Easily testable realizations for logic functions,"IEEE Trans. Comput., vol. C-21, pp. 1183-1188, Nov. 1972.
[6] K. K. Saluja and S. M. Reddy, "Fault detecting test sets for Reed-Muller canonic networks,"IEEE Trans. Comput., vol. C-24, pp. 995-998, 1975.
[7] W. C. Carter, "Signature testing with guaranteed bounds for fault coverage," inDig. Papers Int. Test Conf., IEEE, Nov. 1982, pp. 75- 82.
[8] S. B. Akers, "A parity bit signature for exhaustive testing," inDig. Papers Int. Test Conf., IEEE, Sept. 1986, pp. 48-53.
[9] J. G. Kuhl and S. M. Reddy, "On the detection of stuck-at-faults,"IEEE Trans. Comput., vol. C-27, pp. 467-469, May 1978.
[10] M. G. Karpovsky and L. B. Levitin, "Universal testing of computer hard-ware," inSpectral Techniques and Fault Detection, M. G. Karpovsky, ed. Orlando, FL: Academic, 1985.
[11] L. T. Fisher, "Unateness properties of AND-EXCLUSIVE-OR logic circuits,"IEEE Trans. Comput., vol. C-23, pp. 166-172, Feb. 1974.
[12] M. G. Karpovsky,Finite Orthogonal Series in the Design of Digital Devices. New York: Wiley, 1976.
[13] D. M. Miller and J. C. Muzio, "Spectral techniques for fault detection in combinational logic," inSpectral Techniques and Fault Detection, M. Karpovsky, Ed. Orlando, FL: Academic, 1985.
[14] K. K. Slauja and E. H. Ong, "Minimization of Reed-Muller canonic expansion,"IEEE Trans. Comput., vol. C-28, pp. 535-537, 1979.
[15] Ph. W. Besslich, "Spectral processing of switching functions using signal-flow transformations," inSpectral Techniques and Fault Detection, M. G. Karpovsky, Ed. Orlando, FL: Academic, 1985.
[16] X. Wu, X. Chen, and S. L. Hurst, "Mapping of Reed-Muller coefficients and the minimisation of Exclusive-OR switching functions,"Proc. IEE, vol. E-129, pp. 15-20, 1982.
[17] Y. Z. Zhang and P. J. W. Rayner, "Minimization of Reed-Muller polynomials with fixed polarity,"Proc. IEE, vol. E-131, pp. 177- 186, Sept. 1984.
[18] T. Damarla and M. Karpovsky, "Reed-Muller transforms for fault detections," inProc. 2nd Int. Workshop Spectral Techniques, Ecole Polytechnique de Montreal, Montreal, P. Q., Canada. Oct. 1986.
[19] T. Damarla, "Reed-Muller transforms and their applications for fault detections," Ph.D. dissertation, Boston University, 1987.
[20] J. H. van Lint,Introduction to Coding Theory. New York: Springer-Verlag, 1982.
[21] W. W. Peterson and E. J. Weldon, Jr.,Error Correcting Codes. Cambridge, MA: MIT Press, 1984.
[22] H. Fujiwara and K. Kinoshita, "A design of programmable logic arrays with universal tests,"IEEE Trans. Comput., vol. C-30, pp. 823-838, 1981.
[23] K. Son and D. K. Pradhan, "Design of programmable logic arrays for testability," inProc. IEEE Test Conf., 1980, pp. 163-166.
[24] S. L. Wang and A. Avizienis, "The design of totally self checking circuits using programmable logic arrays," inProc. Int. Symp. FTCS, 1979, pp. 173-180.

Index Terms:
Reed-Muller transforms; fault detection; combinational networks; upper bound; multiple stuck-at-faults; single bridging faults; time complexity; test patterns; test generation; combinatorial circuits; computational complexity; logic testing.
Citation:
T.R. Damarla, M. Karpovsky, "Fault Detection in Combinational Networks by Reed-Muller Transforms," IEEE Transactions on Computers, vol. 38, no. 6, pp. 788-797, June 1989, doi:10.1109/12.24287
Usage of this product signifies your acceptance of the Terms of Use.