This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Importance Sampling for Ising Computers Using One-Dimensional Cellular Automata
June 1989 (vol. 38 no. 6)
pp. 769-774
The authors demonstrate that one-dimensional (1-D) cellular automata (CA) form the basis of efficient VLSI architectures for computations involved in the Monte Carlo simulation of the two-dimensional (2-D) Ising model. It is shown that the time-intensive task of importance sampling the Ising configurations is expedited by the inherent parallelism in this approach. The CA architecture further pr

[1] D. Remshaw and P. Denyer,VLSI Signal Processing: A Bit-Serial Approach, Addison Wesley, Reading, Mass., 1985.
[2] S. Kung, H. Whitehouse, and T. Kailath,VLSI and Modern Signal Processing, Prentice Hall, Englewood Cliffs, N.J., 1985.
[3] H. T. Kung and C. E. Leiserson, inIntroduction to VLSI Systems. Reading, MA: Addison-Wesley, 1980, pp. 271-292.
[4] S. Wolfram, "Statistical mechanics of cellular automata,"Rev. Modern Phys., vol. 55, pp. 601-644, 1983.
[5] A. W. Burks,Essays on Cellular Automata. Urbana, IL: Univ. of Illinois Press, 1970.
[6] E. F. Codd,Cellular Automata. New York: Academic, 1968.
[7] C. L. Seitz, "Concurrent VLSI architectures,"IEEE Trans. Comput., vol. C-33, pp. 1247-1265, 1984.
[8] S. Wolfram, D. A. Lind, M. S. Waterman, P. Grassberger, and S. J. Willson, inCellular Automata, Proc. Interdisciplinary Workshop, Los Alamos, NM, 1984.
[9] S. Wolfram, "Random sequence generation by cellular automata,"Advances Appl. Math., vol. 7, pp. 127-169, 1986.
[10] K. Binder,Monte Carlo Methods in Statistical Physics. New York: Springer-Verlag, 1979.
[11] G. Vichniac, "Simulating physics with cellular automata,"Physica, vol. 10D, p. 96, 1984.
[12] S. Kirkpatrick and R. H. Swendsen, "Statistical mechanics and disordered systems,"Commun. ACM, vol. 28, pp. 363-373, 1985.
[13] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines,"J. Chem. Phys.vol. 21, p. 1087, 1953.
[14] G. S. Pawley, R. H. Swendsen, D. J. Wallace, and K. G. Wilson, "Monte Carlo renormalization-group calculations of critical behavior in the simple-cubic Ising model,"Phys. Rev. Lett., vol. B29, p. 4030, 1984.
[15] R. B. Pearson, J. L. Richardson, and D. Toussaint, "A fast processor for Monte Carlo simulation,"J. Comput. Phys., vol. 51, p. 241, 1983.
[16] A. Hoogland, J. Spaa, B. Selman, and A. Compagner, "A special purpose processor for the Monte Carlo simulation of Ising Spin Systems,"J. Comput. Phys., vol. 51, p. 250, 1983.
[17] A. M. W. Verhangen, "An exactly soluble case of the triangular Ising model in a magnetic field,"J. Stat. Phys., vol. 15, p. 213, 1976.
[18] I. G. Enting, "Crystal growth models and Ising models: Disorder points,"J. Phys. Chem., vol. 10, p. 1379, 1977.
[19] I. G. Enting, "Crystal growth models and Ising models IV: Graphical solution by correlations,"J. Phys. A, vol. 11, p. 555, 2001, 1978.
[20] E. Domany and W. Kinzel, "Equivalence of cellular automata to Ising models and directed percolation,"Phys. Rev. Lett., vol. 53, p. 311, 1984.
[21] S. Wolfram, "Universality and complexity in cellular automata,"Physica, vol. 10D, pp. 1-35, 1984.
[22] S. Wolfram, "Origins of randomness in physical systems,"Phys. Rev. Lett., vol. 55, pp. 449-452, 1985.
[23] S. F. Reddaway, D. M. Scott, and K. A. Smith, "A very high speed Monte Carlo simulation on DAP,"Comput. Phys. Commun., vol. 37, p. 351, 1985.
[24] K. G. Wilson, "Problems in physics with many scales of length,"Sci. Amer., vol. 241, p. 158, 1979.
[25] P. D. Hortensius, "Parallel computation of non-deterministic algorithms in VLSI," Ph.D. dissertation, Univ. of Manitoba, Winnipeg, Canada, 1987, unpublished.
[26] D. Knuth,Seminumerical Algorithms. Reading, MA: Addison-Wesley, 1981.
[27] G. Parisi and F. Rapuano, "Effects of the random number generator on computer simulations,"Phys. Lett., vol. 157B, pp. 301-302, July 18, 1985.
[28] K. G. Wilson, "The renormalization group: Critical phenomena and the Kondo problem,"Rev. Mod. Phys., vol. 47, p, 765, 1975.
[29] T. Niemeyer and J. M. J. van Leeuwen, "Wilson theory for 2- dimensional Ising spin systems,"Physica, vol. 71, p. 17, 1974.

Index Terms:
Ising computers; cellular automata; VLSI architectures; Monte Carlo simulation; importance sampling; Ising configurations; CA architecture; random-number generation; nondeterministic algorithms; finite automata; Ising model; Monte Carlo methods; parallel algorithms; parallel architectures; random number generation.
Citation:
P.D. Hortensius, H.C. Card, R.D. McLeod, W. Pries, "Importance Sampling for Ising Computers Using One-Dimensional Cellular Automata," IEEE Transactions on Computers, vol. 38, no. 6, pp. 769-774, June 1989, doi:10.1109/12.24285
Usage of this product signifies your acceptance of the Terms of Use.