This Article 
 Bibliographic References 
 Add to: 
Multistep Gradual Rounding
April 1989 (vol. 38 no. 4)
pp. 595-600
A value V is to be rounded to an arbitrary precision resulting in the value V". Conventional rounding technique uses one step to accomplish this. Multistep rounding uses several steps to round the value V to successively shorter precisions with the final rounding step producing the desired value V". This alternate rounding method is one way to implement with the minimum of hardware, the denorma

[1] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 754- 1985, IEEE, New York, Aug. 1985.
[2] T. E. Hull, A. Abrham, M. S. Cohen, A. F. X. Curley, C. B. Hall, D. A. Penny, and J. T. M. Sawchuk, "Numerical Turing,"SIGNUM Newsletter, vol. 20, pp. 26-33, July 1985.
[3] W. J. Cody, J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R. Karpinski, J. Palmer, F. N. Ris, and D. Stevenson, "A proposed radix- and word-length-independent standard for floating-point arithmetic,"IEEE Micro, vol. 4, pp. 86-100, Aug. 1984.

Index Terms:
multistep gradual rounding; denormalization process; IEEE Floating-Point Standard 754; floating-point register; digital arithmetic; roundoff errors.
C. Lee, "Multistep Gradual Rounding," IEEE Transactions on Computers, vol. 38, no. 4, pp. 595-600, April 1989, doi:10.1109/12.21152
Usage of this product signifies your acceptance of the Terms of Use.