This Article 
 Bibliographic References 
 Add to: 
Minimizability of Random Boolean Functions
April 1989 (vol. 38 no. 4)
pp. 593-595
The average number of prime k-cubes and essential k-cubes in an n-variable, single-output Boolean function has already been obtained combinationally. The authors show how the same quantities can be obtained geometrically, using the theory of random clumping and take an initial step in calculating, for k-cubes in the minimized form of a function. The authors compare their results to minimization

[1] F. Mileto and G. Putzolu, "Average values of quantities appearing in Boolean function minimization,"IEEE Trans. Electron. Comput., vol. EC-13, pp. 87-92, Apr. 1964.
[2] F. Mileto and G. Putzolu, "Average values of quantities appearing in multiple output Boolean minimization,"IEEE Trans. Electron. Comput., vol. EC- 14, pp. 542-552, Aug. 1965.
[3] S. A. Roach,The Theory of Random Clumping. London, England: Methuen, 1968.
[4] P. Roth,Computer Logic, Testing and Verification. Potomac, MD: Computer Science, 1980.
[5] R. K. Brayton, G. D. Hachtel, L. A. Hemachandra, A. R. Newton, and A. L. M. Sangiovanni-Vincentelli, "A comparison of logic minimization strategies using ESPRESSO: An APL program package for partitioned logic minimization," inIEEE Proc. Int. Symp. Circuits Syst., Rome, Italy, 1982, pp. 42-48.

Index Terms:
random Boolean functions; prime k-cubes; essential k-cubes; n-variable; random clumping; ESPRESSO; Boolean functions; minimisation.
H. Fleisher, J. Giraldi, R. Phoenix, M. Tavel, "Minimizability of Random Boolean Functions," IEEE Transactions on Computers, vol. 38, no. 4, pp. 593-595, April 1989, doi:10.1109/12.21151
Usage of this product signifies your acceptance of the Terms of Use.