The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (1989 vol.38)
pp: 593-595
ABSTRACT
The average number of prime k-cubes and essential k-cubes in an n-variable, single-output Boolean function has already been obtained combinationally. The authors show how the same quantities can be obtained geometrically, using the theory of random clumping and take an initial step in calculating, for k-cubes in the minimized form of a function. The authors compare their results to minimization
INDEX TERMS
random Boolean functions; prime k-cubes; essential k-cubes; n-variable; random clumping; ESPRESSO; Boolean functions; minimisation.
CITATION
H. Fleisher, J. Giraldi, R. Phoenix, M. Tavel, "Minimizability of Random Boolean Functions", IEEE Transactions on Computers, vol.38, no. 4, pp. 593-595, April 1989, doi:10.1109/12.21151
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool