This Article 
 Bibliographic References 
 Add to: 
A Group-Theoretic Model for Symmetric Interconnection Networks
April 1989 (vol. 38 no. 4)
pp. 555-566
The authors develop a formal group-theoretic model, called the Cayley graph model, for designing, analyzing, and improving such networks. They show that this model is universal and demonstrate how interconnection networks can be concisely represented in this model. It is shown that this model enables the authors to design networks based on representations of finite groups. They can then analyze

[1] Amer. Math. Monthly, vol. 82, no. 1, p. 1010, 1975.
[2] S. B. Akers and B. Krishnamurthy, "Group graphs as interconnection networks," inProc. 14th Int. Conf. Fault Tolerant Comput., 1984, pp. 422-427.
[3] C. Berge, inPrinciples of Combinatorics. New York: Academic, 1971, p. 141.
[4] N. L. Biggs,Algebraic Graph Theory. Cambridge, MA: Cambridge University Press, 1974.
[5] J. A. Bondy and U. S. R. Murty,Graph Theory with Applications. New York: North Holland, 1979.
[6] F. E. Fich, "New bounds for parallel prefix circuits," inProc. 15th Annu. ACM Symp. Theory Comput., 1983, pp. 100-109.
[7] E. Fuller and B. Krishnamurthy, "Symmetries in graphs: An annotated bibliography," Tektronix Lab. Tech. Rep. CR-86-03, 1986.
[8] W. H. Gates and C. H. Papadimitriou, "Bounds for sorting by prefix reversal,"Discrete Math, vol. 27, pp. 47-57, 1979.
[9] I. N. Herstein,Topics in Algebra. Blaisdel, 1964.
[10] C. Hoffman,Group Theoretic Algorithms and Graph Isomorphism. New York: Springer-Verlag, 1982.
[11] R. E. Ladner and M. J. Fischer, "Parallel prefix computation,"J. ACM, vol. 27, no. 4, pp. 831-838, Oct. 1980.
[12] F. T. Leighton,Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph and Lower Bound Techniques for VLSI. Cambridge, MA: M.I.T. Press, 1983.
[13] M. C. Pease, "The indirect binaryn-cube microprocessor array,"IEEE Trans. Comput., vol. C-26, pp. 458-473, 1977.
[14] F. P. Preparata and J. Vuillemin, "The cube-connected cycle: A versatile network for parallel computation,"Commun. ACM, vol. 24, pp. 300-309, May 1981.
[15] G. Sabidussi, "Vertex transistive graphs,"Monatsh. Math.vol. 68, pp. 426-438, 1968.
[16] M. R. Samatham and D. K. Pradhan, "A multiprocessor network suitable for single-chip VLSI implementation," inProc. 11th Symp. Comput. Architect., June 1984, pp. 328-337.
[17] C. L. Seitz, "Concurrent VLSI architectures,"IEEE Trans. Comput., pp. 1247-1265, 1984.
[18] H. S. Stone, "Parallel processing with the perfect shuffle,"IEEE Trans. Comput., vol. C-20, pp. 153-161, 1971.
[19] J. D. Ullman,Computational Aspects of VLSI. Rockville, MD: Computer Science Press, 1984, pp. 209-243.
[20] S. Zaks, "A new algorithm for generation of permutations," Tech. Rep. 220, Technion-Israel Instit. Technol., 1981.

Index Terms:
group-theoretic model; symmetric interconnection networks; Cayley graph model; finite groups; combinatorial problems; star graphs; pancake graphs; graph theory; multiprocessor interconnection networks.
S.B. Akers, B. Krishnamurthy, "A Group-Theoretic Model for Symmetric Interconnection Networks," IEEE Transactions on Computers, vol. 38, no. 4, pp. 555-566, April 1989, doi:10.1109/12.21148
Usage of this product signifies your acceptance of the Terms of Use.