This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Fault-Tolerant Array Processors Using Single-Track Switches
April 1989 (vol. 38 no. 4)
pp. 501-514
An array grid model based on single-track switches is proposed. A reconfigurability theorem is developed to provide the theoretical footing for novel reconfiguration algorithms for the fabrication-time and run-time processing. For fabrication-time yield enhancement, the problem of finding a feasible reconfiguration using global control can be reformulated as a maximum independent set problem. A

[1] J. A. Abraham and W. K. Fuchs, "Fault and error models for VLSI,"Proc. IEEE, pp. 639-654, May 1986.
[2] C. Bron and J. Kerbosch, "Algorithm 457-Finding all cliques of an undirected graph,"Commun. ACM, vol. 16, 1973.
[3] C. W. Chang, "Real-time fault-tolerant computing for VLSI processor arrays," Ph.D. dissertation, Dep. Elec. Eng., Univ. of Southern California, 1988.
[4] N. Christofides,Graph Theory: An Algorithmic Approach. New York: Academic, 1975.
[5] J. W. Greene and A. El Gamal, "Configuration of VLSI arrays in the presence of defects,"J. ACM, vol. 31, no. 4, pp. 694-717, 1984.
[6] K. S. Hedlund and L. Snyder, "Wafer scale integration of configurable highly parallel (CHIP) processors," inProc. Conf. Parallel Processing, 1982, pp. 262-264.
[7] S. N. Jean, "Mapping/matching algorithms to reconfigurable mesh arrays," Ph.D. dissertation, Univ. of Southern California, Los Angeles, 1988.
[8] J. R. Hwang, "The reconfiguration and switch design of array processors," Master's Thesis, The Institute of Electronics, Chiao Tung University, Taiwan, 1987.
[9] S. N. Jean and S. Y. Kung, "Necessary and sufficient conditions for reconfigurability in single-track switch WSI arrays," inProc. Int. Conf. Wafer Scale Integration, Jan. 1989.
[10] I. Koren, "A reconfigurable and fault-tolerant VLSI multiprocessor array," inProc. 8th Int. Symp. Comput. Architecture, Minneapolis, MN, May 1981, pp. 425-442.
[11] I. Koren and D. J. Pradhan, "Modeling the effect of redundancy on yield and performance of VLSI systems,"IEEE Trans. Comput., vol. C-36, pp. 344-355, 1987.
[12] H. T. Kung and C. E. Leiserson, "Systolic arrays (for VLSI)," inProc. Sparse Matrix Symp., SIAM, 1978, pp. 256-282.
[13] H. T. Kung and M. S. Lam, "Wafer-scale integration and two-level pipelined implementations of systolic arrays,"J. Parallel Distribut. Comput., pp. 32-63, 1984.
[14] S. Y. Kung, K. S. Arun, R. J. Gal-Ezer, and D. V. Bhaskar Rao, "Wavefront array processor: Language, architecture, and applications,"IEEE Trans. Comput., pp. 1054-1066, Nov. 1982.
[15] S. Y. Kung, C. W. Chang, and C. W. Jen, "Real-time reconfiguration for fault-tolerant VLSI array processors," inProc. Real-Time Syst. Symp., Dec. 1986, pp. 46-54.
[16] S. Y. Kung, S. C. Lo, S. N. Jean, and J. N. Hwang, "Wavefront array processors--Concept to implementation,"IEEE Comput. Mag., vol. 20, pp. 18-33, July 1987.
[17] S. Y. Kung, S. N. Jean, and C. W. Chang, "Fabrication-time and run-time fault-tolerant array processors using single-track switches," inProc. Int. Workshop Defect Fault Tolerance VLSI Syst., 7.2, Oct. 1988.
[18] T. Leighton and C. E. Leiserson, "Wafer-scale integration of systolic arrays,"IEEE Trans. Comput., pp. 448-461, May 1985.
[19] F. Lombardi, R. Negrini, M. G. Sami, and R. Stefanelli, "Reconfiguration of VLSI arrays: A covering approach," inProc. FTCS, 1987, pp. 251-256.
[20] L. Jervis, F. Lombardi, and D. Sciuto, "Orthogonal mapping: A reconfiguration strategy for fault tolerant VLSI/WSI 2-D arrays," inProc. Int. Workshop Defect Fault Tolerance VLSI Syst., 7.4, Oct. 1988.
[21] S. R. McConnel, D. P. Siewiorek, and M. M. Tsao, "The measurement and analysis of transient errors in digital computer systems," inProc. IEEE Fault-Tolerant Comput. Symp., 1979, pp. 67-70.
[22] W. R. Moore, "A review of fault-tolerant techniques for the enhancement of integrated circuit yield,"Proc. IEEE, pp. 684-698, May 1986.
[23] A. L. Rosenberg, "The Diogenes approach to testable fault-tolerant arrays of processors,"IEEE Trans. Comput., pp. 902-910, Oct. 1983.
[24] M. Sami and R. Stefanelli, "Fault-tolerance and functional reconfiguration in VLSI arrays," inProc. Int. Conf. Circuits Syst., 1986, pp. 643-648.
[25] M. Sami and R. Stefanelli, "Reconfigurable architectures for VLSI processing arrays,"Proc. IEEE, pp. 712-722, May 1986.
[26] G. Saucier, J-L Patry, E-F Kouka, T. Midwinter, P. Ivey, M. Huch, and M. Glesner, "Defect tolerance in a wafer scale array for image processing," inProc. Int. Workshop Defect Fault Tolerance in VLSI Syst., 8.2, Oct. 1988.
[27] D. P. Siewiorek and R. S. Swarz,The Theory and Practice of Reliable System Design. Bedford, MA: Digital, 1982.
[28] A. D. Singh, "Interstitial redundancy: An area efficient fault tolerance scheme for large area VLSI processor arrays,"IEEE Trans. Comput., vol. 37, pp. 1398-1410, Nov. 1988.
[29] L. Snyder, "Introduction to the configurable, highly parallel computer,"IEEE Computer, vol. 15, pp. 47-56, Jan. 1982.
[30] C. H. Stapper, F. M. Armstrong, and K. Saji, "Integrated circuit yield statistics,"Proc. IEEE, vol. 71, pp. 453-470, Apr. 1983.
[31] C. H. Stapper, "Block alignment: A method for increasing the yield of memory chips that are partially good," inProc. Int Workshop on Defect Fault Tolerance VLSI Syst., 6.3, Oct. 1988.

Index Terms:
fabrication time processing; fault tolerant array processors; single-track switches; array grid model; reconfigurability theorem; run-time processing; yield enhancement; graph theory; propagation time; fault tolerant computing; graph theory; parallel processing.
Citation:
S.-Y. Kung, S.-N. Jean, C.W. Chang, "Fault-Tolerant Array Processors Using Single-Track Switches," IEEE Transactions on Computers, vol. 38, no. 4, pp. 501-514, April 1989, doi:10.1109/12.21143
Usage of this product signifies your acceptance of the Terms of Use.