This Article 
 Bibliographic References 
 Add to: 
A Highly Parallel Algorithm for Root Extraction
March 1989 (vol. 38 no. 3)
pp. 443-449
A parallel algorithm for extracting the roots of a polynomial is presented. The algorithm is based on Graeffe's method, which is rarely used in serial implementations, because it is slower than many common serial algorithms, but is particularly well suited to parallel implementation. Graeffe's method is an iterative technique, and parallelism is used to reduce the execution time per iteration.

[1] E. H. Bareiss, "Resultant procedure and the mechanization of the Graeffe process,"J. ACM, vol. 7, pp. 346-386, Oct. 1960.
[2] G. Barneset al., "The Illiac IV computer,"IEEE Trans. Comput., pp. 746-757, Aug. 1968.
[3] B. A. Crane, "PEPE computer architecture," inProc. COMPCON, Sept. 1972, pp. 57-60.
[4] M. J. Flynn, "Very high-speed computing systems,"Proc. IEEE, vol. 54, pp. 1901-1909, Dec. 1966.
[5] P. Henrici,Elements of Numerical Analysis. New York: Wiley, 1964.
[6] F. B. Hildebrand,Introduction to Numerical Analysis. New York: McGraw-Hill, 1956, ch. 2.
[7] M. A. Jenkins and J. F. Traub, "A three-stage algorithm for real polynomials using quadratic iteration,"SIAM J. Numer. Anal., pp. 545-566, Dec. 1970.
[8] M. A. Jenkins and J. F. Traub, "Zeros of a real polynomial,"ACM Trans. Math. Software, 1975.
[9] T. Kanade and J. Webb, "Vision on a systolic array machine," inProc. DARPA Comput. Architecture Vision Workshop, May 1984, pp. 21-25.
[10] W. L. Miranker, "Parallel methods for approximating the root of a function,"IBM J. Res. Develop., pp. 297-301, 1969.
[11] W. L. Miranker, "A survey of parallelism in numerical analysis,"SIAM Rev., pp. 524-547, Oct. 1971.
[12] NCR Corp., Digital Signal Processing Technical Seminar Supplemental Documents, Fort Collins, CO, 1985.
[13] A. Norton and G. F. Pfister, "A methodology for predicting multiprocessor performance," inProc. 1985 Int. Conf. Parallel Processing, Aug. 1985, pp. 772-781.
[14] G. F. Pfisteret al., "The IBM research parallel processor prototype (RP3): Introduction and architecture," inProc. 1985 Int. Conf. Parallel Processing, Aug. 1985, pp. 764-771.
[15] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E. Smalley, Jr., and S. D. Smith, "PASM: A partitionable SIMD/MIMD system for image processing and pattern recognition,"IEEE Trans. Comput., vol. C-30, pp. 934-947, Dec. 1981.
[16] G. S. Shedler, "Parallel numerical methods for the solution of equations,"Commun. ACM, pp. 286-290, May 1967.
[17] H. J. Siegel,Interconnection Networks for Large-Scale Parallel Processing: Theory and Case Studies. Lexington, MA: Lexington Books, 1985.
[18] K. J. Thurber,Large Scale Computer Architecture: Parallel and Associative Processors. Rochelle Park, NJ: Hayden, 1976.
[19] J. A. Webb and T. Kanade, "Vision on a systolic array machine," inEvaluation of Multicomputers for Image Processing, L. Uhr, K. Preston, Jr., S. Levialdi, and M. J. B. Duff, Eds. Orlando, FL: Academic, 1986, pp. 181-201.
[20] S. Winograd, "Parallel iteration methods," inComplexity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds. New York: Plenum, 1972, pp. 53-60.

Index Terms:
highly parallel algorithm; root extraction; roots of a polynomial; iterative technique; interprocessor communication; SIMD machine; arithmetic complexity; computational complexity; iterative methods; parallel algorithms; polynomials.
T.A. Rice, L.H. Jamieson, "A Highly Parallel Algorithm for Root Extraction," IEEE Transactions on Computers, vol. 38, no. 3, pp. 443-449, March 1989, doi:10.1109/12.21130
Usage of this product signifies your acceptance of the Terms of Use.