This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Pairwise Reduction for the Direct, Parallel Solution of Sparse, Unsymmetric Sets of Linear Equations
December 1988 (vol. 37 no. 12)
pp. 1648-1654
A paradigm for concurrent computing is explored in which a group of autonomous, asynchronous processes shares a common memory space and cooperates to solve a single problem. The processes synchronize with only a few others at a time; barrier synchronization is not permitted except at the beginning and end of the computation. The paradigm maps directly to a shared-memory multiprocessor with effi

[1] G. Alaghband, "Parallel pivoting combined with parallel reduction," ICASE Rep 87-75, NASA Langley Res. Center. Hampton, VA, 1987.
[2] S. G. Abraham, "Reducing interprocessor communication in parallel architectures: System configuration and task assignment," CSRD Rep. 726, Center Supercomput. Res. Develop., Univ. Illinois, Urbana, IL, 1987.
[3] S. G. Abraham and T. A. Davis, "Blocking for parallel sparse linear system solvers," inProc. 1988 Int. Conf. Parallel Processing. Univ. Park, PA: Penn. State Univ. Press, 1988, vol. 1, pp. 166-173.
[4] W. Abu-Sufah and A. D. Malony, "Vector processing on the Alliant FX/8 multiprocessor," inProc. 1986 Int. Conf. Parallel Processing. Univ. Park, PA: Penn. State Univ. Press, 1986, pp. 559-566.
[5] Alliant Computer Systems Corp.,FX/Series Architecture Manual, Littleton, MA, 1986.
[6] P. E. Bjorstad, "A large scale, sparse, secondary storage, direct linear equation solver for structural analysis and its implementation on vector and parallel architectures,"Parallel Comput., vol. 5, pp. 3-12, 1987.
[7] D. A. Calahan, "Parallel solution of sparse simultaneous linear equations," inProc. 11th Allerton Conf. Circuits Syst. Theory, Univ. Illinois, Urbana, IL, 1973, pp. 729-735.
[8] G. Dahlquist andÅ. Björk,Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1974.
[9] A. K. Dave and I. S. Duff, "Sparse matrix calculations on the CRAY- 2,"Parallel Comput., vol. 5, pp. 55-64, 1987.
[10] T. A. Davis, "PSolve: A concurrent algorithm for solving sparse systems of linear equations," CSRD Rep. 612, Center Supercomput. Res. Develop., Univ. Illinois, Urbana, IL, 1986.
[11] T. A. Davis and E. S. Davidson, "PSolve: A concurrent algorithm for solving sparse systems of linear equations," inProc. 1987 Int. Conf. Parallel Processing. Univ. Park, PA: Penn. State Univ. Press, 1987, pp. 483-490.
[12] E. W. Dijkstra, "Hierarchical ordering of sequential processes," inOperating Systems Techniques, C. A. R. Hoare and R. H. Perrott, Eds. New York: Academic, 1972, pp. 72-93.
[13] I. S. Duff, R. Grimes, J. Lewis, and B. Poole, "Sparse matrix text problems,"SIGNUM Newsletter, vol. 17, p. 22, 1982.
[14] I. S. Duff and J. K. Reid, "Some design features of a sparse matrix code,"ACM Trans. Math. Software, vol. 5, pp. 18-35, 1979.
[15] I. S. Duff and J. K. Reid, "The multifrontal solution of unsymmetric sets of linear equaions,"SIAM J. Sci. Stat. Comput., vol. 5, pp. 633-641, 1984.
[16] I. S. Duff, "Parallel implementation of multifrontal schemes,"Parallel Comput., vol. 3, pp. 193-204, 1986.
[17] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, "The Yale sparse matrix package, II: The non-symmetric codes," Rep. 114, Dep. Comput. Sci., Yale Univ., 1977.
[18] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, "Yale sparse matrix package, I: The symmetric codes,"Int. J. Numer. Meth. Eng., vol. 18, pp. 1145-1151, 1982.
[19] A. George, M. T. Heath, J. W. H. Liu, and E. Ng, "Solution of sparse positive definite systems on a shared-memory multiprocessor,"Int. J. Parallel Programming, vol. 15, no. 4, pp. 309-325, 1986.
[20] A. George, M. T. Heath, E. Ng, and J. W. H. Liu, "Symbolic Cholesky factorization on a local-memory multiprocessor,"Parallel Comput., vol. 5, pp. 85-95, 1987.
[21] R. W. Hockney and C. R. Jesshope,Parallel Computers. Bristol, England: Adam Hilger, 1981.
[22] J. W. Huang and O. Wing, "Optimal parallel triangulation of a sparse matrix,"IEEE Trans. Circuits Syst., vol. CAS-26, pp. 726-732, Sept. 1979.
[23] J. A. G. Jess and H. G. M. Kees, "A data structure for parallelL/Udecomposition,"IEEE Trans. Comput., vol. C-31, pp. 231-239, 1982.
[24] H. M. Markowitz, "The elimination form on the inverse and its application to linear programming,"Management Sci., vol. 3, pp. 255-269, 1957.
[25] R. G. Melhem, "A modified frontal technique suitable for parallel systems,"SIAM J. Sci. Stat. Comput., vol. 9, pp. 289-303, 1988.
[26] J. W. H. Liu, "Computational models and task scheduling for parallel sparse Cholesky factorization,"Parallel Comput., vol. 3, pp. 327- 342, 1986.
[27] F. J. Peters, "Parallel pivoting algorithms for sparse symmetric matrices,"Parallel Comput., vol. 1, pp. 99-110, 1984.
[28] A. H. Sameh, "On some parallel algorithms on a ring of processors,"Comput. Phys. Commun., vol. 37, pp. 159-166, 1985.
[29] D. C. Sorenson, "Analysis of pairwise pivoting in Gaussian elimination,"IEEE Trans. Comput., vol. C-34, pp. 274-278, 1985.
[30] R. P. Tewarson,Sparse Matrices. New York: Academic, 1973.
[31] J. H. Wilkinson, "Error analysis of direct methods of matrix inversion,"J. ACM, vol. 8, pp. 281-330, 1961.
[32] O. Wing and J. W. Huang, "A computation model of parallel solution of linear equations,"IEEE Trans. Comput., vol. C-29, pp. 632-638, 1980.

Index Terms:
pairwise reduction; parallel solution; sparse; unsymmetric sets; linear equations; concurrent computing; shared-memory multiprocessor; pairwise solve; PSolve; linear algebra; parallel algorithms.
Citation:
T.A. Davis, E.S. Davidson, "Pairwise Reduction for the Direct, Parallel Solution of Sparse, Unsymmetric Sets of Linear Equations," IEEE Transactions on Computers, vol. 37, no. 12, pp. 1648-1654, Dec. 1988, doi:10.1109/12.9742
Usage of this product signifies your acceptance of the Terms of Use.