This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Efficient Parallel Convex Hull Algorithms
December 1988 (vol. 37 no. 12)
pp. 1605-1618
Parallel algorithms are presented to identify (i.e. detect and enumerate) the extreme points of the convex hull of a set of planar points using a hypercube, pyramid, tree, mesh-of-trees, mesh with reconfigurable bus, exclusive-read-exclusive-write parallel random-access machine (EREW PRAM), and modified AKS network. It is shown that the problem of identifying the convex hull for a set of planar

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and C. Yap, "Parallel computational geometry," inProc. 1985 Symp. Foundations Comput. Sci., pp. 468-477.
[2] M. Ajtai, J. Komlos, and E. Szemeredi, "AnO(nlogn) sorting network,"Combinatorica, vol. 3, pp. 1-19, 1983.
[3] S. Akl, "Parallel algorithms for convex hulls," Dep. Comput. Sci., Queens Univ., Kingston, Ont., Canada, 1983.
[4] H. M. Alnuweiri and V. K. Prasanna Kumar, "Efficient image computations on VLSI architectures with reduced hardware," inProc. IEEE 1987 Workshop Comput. Architecture, Pattern Anal. Mach. Intell., pp. 192-199.
[5] Ametek, Inc.,Ametek System 14 User's Guide, Aug. 1986.
[6] M. J. Atallah and M. T. Goodrich, "Efficient parallel solutions to some geometric problems,"J. Parallel Distributed Comput., vol. 3, pp. 492-507, 1986.
[7] M. J. Atallah and M. T. Goodrich, "Parallel algorithms for some functions of two convex polygons," inProc. 24th Allerton Conf. Commun., Contr., Comput., 1986, pp. 758-767.
[8] D. Avis, "On the complexity of finding the convex hull of a set of points," Tech. Rep. FOCS 79.2, School of Comput. Sci., McGill Univ., 1979.
[9] K. E. Batcher, "Sorting networks and their applications," inProc. AFIPS Spring Joint Comput. Conf., vol. 32, 1968, pp. 307-314.
[10] P. J. Burt and G. S. van der Wal, "Iconic image analysis with the pyramid vision machine (PVM)," inProc. IEEE 1987 Workshop Pattern Anal. Mach. Intell., pp. 137-144.
[11] V. Cantoni, M. Ferretti, S. Levialdi, and R. Stefanelli, "Papia: Pyramidal architecture for parallel image analysis," inProc. 1985 Comput. Arithmetic Conf.
[12] B. Chazelle, "Computational geometry on a systolic chip,"IEEE Trans. Comput., vol. C-33, pp. 774-785, 1984.
[13] A. Chow, "A parallel algorithm for determining convex hulls of sets of points in two dimensions," inProc. 19th Allerton Conf. Commun., Contr., Comput., 1981, pp. 214-233.
[14] P. Clermont and A. Merigot, "Real time synchronization in a multi-SIMD massively parallel machine," inProc. IEEE 1987 Workshop Pattern Anal. Machine Intell., pp. 131-136.
[15] R. Cole, "Parallel merge sort," inProc. 27th IEEE Symp. Foundations Comput. Sci., 1986, pp. 511-517.
[16] S. Cook and C. Dwork, "Bounds on time for parallel RAMs to compute simple functions," inProc. 14th ACM Symp. Theory Comput., pp. 231-233.
[17] R. Cypher, J. L. C. Sanz, and L. Snyder, "Hypercube and shuffle-exchange algorithms for image component labeling," inProc. IEEE 1987 Workshop Pattern Anal. Mach. Intell., pp. 5-9.
[18] G. Fritsch, W. Kleinoeder, C. U. Linster, and J. Volkert, "EMSY85-- The Erlanger multiprocessor system for a broad spectrum of applications," inProc. 1983 Int. Conf. Parallel Processing, pp. 325-330.
[19] M. T. Goodrich, "Finding the convex hull of a sorted point set in parallel,"Inform. Processing Lett., vol. 26, 1987/1988, pp. 173- 179.
[20] J. L. Gustafson, S. Hawkinson, and K. Scott, "The architecture of a homogeneous vector supercomputer," inProc. 1986 Int. Conf. Parallel Processing, pp. 649-652.
[21] J. P. Hayeset al., "A microprocessor-based hypercube supercomputer,"IEEE Micro, vol. 6, pp. 6-17, Oct. 1986.
[22] W. D. Hillis,The Connection Machine. Cambridge, MA: MIT Press, 1985.
[23] Intel Corporation,iPSC System Overview, Jan. 1986.
[24] C. S. Jeong and D. T. Lee, "Parallel geometric algorithms on a mesh connected computer," Tech. Rep. 87-02-FC-01 (revised), Dep. EECS, Northwestern Univ.
[25] C. P. Kruskal, L. Rudolf, and M. Snir, "The power of parallel prefix," inProc. 1985 Int. Conf. Parallel Processing, pp. 180-185.
[26] V. K. P. Kumar and M. M. Eshaghian, "Parallel geometric algorithms for digitized pictures on mesh of trees," inProc. IEEE 1986 Int. Conf. Parallel Processing, pp. 270-273.
[27] V. K. Prasanna-Kumar and C. S. Raghavendra, "Array processor with multiple broadcasting," inProc. Annu. Symp. Computer Architecture, June 1985.
[28] T. Leighton, "Tight bounds on the complexity of parallel sorting,"IEEE Trans. Comput., vol. C-34, no. 4, pp. 344-354, Apr. 1985.
[29] H. Li and M. Maresca, "Polymorphic-torus network," inProc. Int. Conf. Parallel Processing, 1987.
[30] M. Lu and P. Varman, "Solving geometric proximity problems on mesh-connected computers," inProc. 1985 Workshop Comput. Architecture Pattern Anal. Image Database Management, pp. 248- 255.
[31] R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout, "Meshes with reconfigurable buses," inProc. 5th MIT Conf. Advanced Res. VLSI(Cambridge, MA), 1988, pp. 163-178.
[32] R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout, "Image computations on reconfigurable VLSI arrays," inProc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition, 1988, pp. 925-930.
[33] R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout, "Data movement operations and applications on reconfigurable VLSI arrays," inProc. 1988 Int. Conf. Parallel Processing Vol. I: Architecture, 1988, pp. 205-208.
[34] R. Miller and Q. F. Stout, "Computational geometry on a meshconnected computer," inProc. 1984 IEEE Int. Conf. Parallel Processing, pp. 66-73.
[35] R. Miller and Q. F. Stout, "Geometric algorithms for digitized pictures on a meshconnected computer,"IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-7, pp. 216-228, 1985.
[36] R. Miller and Q. F. Stout, "Varying diameter and problem size in mesh-connected computers," inProc. 1985 Int. Conf. Parallel Processing, pp. 697-699.
[37] R. Miller and Q. F. Stout, "Graph and image processing algorithms for the hypercube," inProc. 1986 SIAM Conf. Hypercube Multiprocessors, 1987, pp. 418-425.
[38] R. Miller and Q. F. Stout, "Mesh computer algorithms for computational geometry," Tech. Rep. 86-18, State Univ. New York, Buffalo, Dep. Comput. Sci., July 1986;IEEE Trans. Comput., to be published.
[39] R. Miller and Q. F. Stout, "Data movement techniques for the pyramid computer,"SIAM J. Comput., vol. 16, pp. 38-60, 1987.
[40] R. Miller and Q. F. Stout,Parallel Algorithms for Regular Architectures. Cambridge, MA: MIT Press, 1988, to be published.
[41] R. Miller and Q. F. Stout, "Augmenting Leighton's modification to the AKS network," Univ. Michigan Tech. Rep., 1988.
[42] D. Nassimi and S. Sahni, "Finding connected components and connected ones on a mesh-connected parallel computer,"SIAM J. Comput., vol 9, pp. 744-757, 1980.
[43] D. Nassimi and S. Sahni, "Parallel permutation and sorting algorithms and a new generalized connection network,"J. ACM, vol. 29, no. 3, pp. 642-667, 1982.
[44] D. Nath, S. N. Maheshwari, and P. C. P. Bhatt, "Parallel algorithms for the convex hull in two dimensions," inProc. Conf. Anal. Problem Classes Programming Parallel Comput., 1981, pp. 358- 372.
[45] F. P. Preparata and S. J. Hong, "Convex hulls of finite sets of points in two and three dimensions,"Commun. ACM, vol. 20, pp. 87-93, 1977.
[46] F. P. Preparata and D. T. Lee, "Computational geometry--A survey,"IEEE Trans. Comput., vol. C-33, pp. 1072-1100, 1984.
[47] F. P. Preparata and M. I. Shamos,Computational Geometry, an Introduction. New York: Springer-Verlag, 1985.
[48] F. P. Preparata and J. Vuillemin, "The cube-connected cycle: A versatile network for parallel computation,"Commun. ACM, vol. 24, pp. 300-309, May 1981.
[49] H. Raynaud, "Sur l'enveloppe convexe des nuages de points aleatoires dansRn,"J. Appl. Probability, vol 7, pp. 35-48, 1970.
[50] J. H. Reif and L. G. Valiant, "A logarithmic time sort for linear size networks,"J. ACM, vol. 34, no. 1, Jan. 1987.
[51] D. H. Schaeferet al., "The PMMP-A pyramid of MPP processing elements," inProc. 18th Annu. Hawaiion Int. Conf. Syst. Sci., vol. 1, 1985, pp. 178-184.
[52] M. I. Shamos, "Computational geometry," Ph.D. dissertation, Dep. Comput. Sci., Yale Univ., 1978.
[53] L. Snyder, "Introduction to the configurable, highly parallel computer,"Computer, pp. 47-56, Jan. 1982.
[54] Q. F. Stout, "Meshes with multiple buses," inProc. 1986 IEEE Symp. Foundat. Comput. Sci., pp. 264-273.
[55] S. L. Tanimoto, "Programming techniques for hierarchical parallel image processors," inMulticomputers and Image Processing Algorithms and Programs, K. Preston and L. Uhr, Eds. New York: Academic, 1982, pp. 421-429.
[56] G.T. Toussaint, "Pattern recognition and geometrical complexity," inProc. 5th Int. Conf. Pattern Recognition, 1980, pp. 1324-1347.
[57] L. Uhr,Algorithm-Structured Computer Arrays and Networks. New York: Academic, 1984.
[58] J. D. Ullman,Computational Aspects of VLSI. Rockville, MD: Computer Science Press, 1984.
[59] C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, J. G. Nash, and D. B. Shu, "The image understanding architecture," COINS Tech. Rep. 87-76, Univ. Massachusetts, Amherst.
[60] A. Yao, "A lower bound to finding convex hulls," Dep. Computer Sci., Stanford Univ., 1979.

Index Terms:
parallel algorithms; convex hull algorithms; planar points; hypercube; pyramid; mesh-of-trees; EREW PRAM; modified AKS network; convex hull; computational geometry; parallel algorithms.
Citation:
R. Miller, Q.F. Stout, "Efficient Parallel Convex Hull Algorithms," IEEE Transactions on Computers, vol. 37, no. 12, pp. 1605-1618, Dec. 1988, doi:10.1109/12.9737
Usage of this product signifies your acceptance of the Terms of Use.