This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
NC Algorithms for Recognizing Chordal Graphs and k Trees
October 1988 (vol. 37 no. 10)
pp. 1178-1183
The authors present parallel algorithms for recognizing the chordal graphs and k trees. Under the PRAM (parallel random-access-machine) model of computation with concurrent reading and writing allowed, these algorithms take O(log n) time and require O(n/sup 4/) processors. The algorithms have a better processor bound than an independent result by A. Edenbrandt (1985) for recognizing chordal gra

[1] C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman, and M. Yannakakis, "Properties of acyclic database schemes," inProc. 13th Annu. ACM Symp. Theory Comput., 1981, pp. 355-362.
[2] L. Beineke and R. Pippert, "Properties and characterizations ofk- trees,"Mathematica, vol. 18, pp. 141-151, 1971.
[3] P. Buneman, "The recovery of trees from measures of dissimilarity," inMathematics in the Archaeological and Historical Sciences. Edinburgh, Scotland: Edinburgh Univ., 1972, pp. 387-395.
[4] N. Chandrasekharan, "New characterizations and algorithmic studies on chordal graphs andk-trees," M.Sc. (Engg.) Thesis, School of Automation, Indian Instit. Sci., Bangalore, India, 1985.
[5] R. Chandrasekharan and A. Tamir, "Polynomially bounded algorithms for locating p-centers on a tree,"Math. Programming, vol. 22, pp. 304-315, 1982.
[6] D. Corneil, "Algorithms for perfect graphs," inProc. IEEE Int. Symp. Circuits Syst., 1985, pp. 1187-1190.
[7] G. Dirac, "On rigid circuit graphs," inProc. Abh. Math. Sem., Univ. of Hamburg, vol. 25, 1961, pp. 71-76.
[8] P. Duchet, "Classical perfect graphs," inTopics on Perfect Graphs, C. Berge and V. Chvatal Eds.,Ann. Disc. Math., vol. 21, pp. 67-96 North-Holland, 1984.
[9] A. Edenbrandt, "Combinatorial problems in matrix computation," Ph.D. dissertation, Cornell Univ., Ithaca, NY, July 1985.
[10] D. Foata, "Enumeratingk-trees,"Disc. Math., vol. 1, pp. 181-186, 1974.
[11] D. Fulkerson and O. Gross, "Incidence matrices and interval graphs,"Pac. J. Math., vol. 15, pp. 835-855, 1965.
[12] F. Gavril, "The intersection graphs of subtrees in trees are exactly the chordal graphs,"J. Combin. Theory, B, vol. 16, pp. 47-56, 1974.
[13] M. C. Golumbic,Algorithmic Graph Theory and Perfect Graphs. New York: Academic, 1980.
[14] F. Harary and E. Palmer, "On acyclic simplicial complexes,"Mathematica, vol. 15, pp. 115-122, 1968.
[15] D. Helmbold and E. Mayr, "Perfect graphs and parallel algorithms," inProc. IEEE 1986 Int. Conf. Parallel Processing, Aug. 1986, to be published.
[16] D. Kozen, U. Vazirani, and V. Vazirani, "NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching," inProc. 5th Conf. FST&TCS, New Delhi, India, pp. 496-503, 206,Lecture Notes in Computer Science, Springer-Verlag, 1985.
[17] J. Naor, M. Naor, and A, Schaffer, "Fast parallel algorithm for chordal graphs," inProc. Symp. Theory Comput., New York, May 1987.
[18] N. Pippenger, "On simultaneous resource bounds," inProc. 20th IEEE Symp. Foundations Comput. Sci., 1979, pp. 307-311.
[19] A. Proskurowski, "Recursive graphs, recursive labelings and shortest paths,"SIAM J. Comput., vol. 10, pp. 391-397, 1981.
[20] A. Proskurowski, "k-trees: Representations and distances," Tech. Rep., CIS-TR- 80-5, Univ. Oregon, OR, 1980.
[21] A. Proskurowski, "Separating subgraphs ink-trees: Cables and caterpillars,"Disc. Math., vol. 49, pp. 275-285, 1984.
[22] D. Rose, "A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations," inGraph Theoryand Computing, R. Read, Ed. New York: Academic, 1972, pp. 183-217.
[23] D. Rose, "On simple characterizations ofk-trees,"Disc. Math., vol. 7, pp. 317-322, 1974.
[24] D. Rose, R. E. Tarjan, and G. Lueker, "Algorithmic aspects of vertex elimination on graphs,"SIAM J. Comput., vol. 5, pp. 266-283, 1976.
[25] D. Shier, "Some aspects of perfect elimination orderings in chordal graphs,"Disc. Appl. Math., vol. 7, pp. 325-331, 1984.
[26] Y. Shiloach and U. Vishkin, "AnO(logn) parallel connectivity algorithm,"J. Algorithms, vol. 3, pp. 57-67, 1982.
[27] R. Tarjan and M. Yannakakis, "Simple linear-time algorithms to test the chordality of graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergrahs,"SIAM J. Comput., vol. 13, pp. 566- 579, 1984.
[28] U. Vishkin, "Implementation of simultaneous-memory accesses in models that forbid it,"J. Algorithms, vol. 4, pp. 45-50, 1983.
[29] S. H. Whitesides, "An algorithm for finding clique cut-sets,"Inform. Processing Lett., vol. 12, pp. 31-32, 1981.
[30] N. Chandrasekharan, R. Laskar, and S. S. Iyengar, "Maximal clique-separators of chordal graphs and New separator theorems," inProc. South Eastern Combinatorial Conf., Boca Raton, FL, Feb. 1987.
[31] A. Mortra and S. S. Iyengar, "Parallel algorithms for some computation problems,"Adv. Comput., vol. 26, pp. 95-153, 1987.

Index Terms:
chordal graph recognition; NC algorithms; k trees; parallel algorithms; PRAM; graph theory; parallel algorithms; trees (mathematics).
Citation:
N. Chandrasekharan, S.S. Iyengar, "NC Algorithms for Recognizing Chordal Graphs and k Trees," IEEE Transactions on Computers, vol. 37, no. 10, pp. 1178-1183, Oct. 1988, doi:10.1109/12.5979
Usage of this product signifies your acceptance of the Terms of Use.