
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
N. Chandrasekharan, S.S. Iyengar, "NC Algorithms for Recognizing Chordal Graphs and k Trees," IEEE Transactions on Computers, vol. 37, no. 10, pp. 11781183, October, 1988.  
BibTex  x  
@article{ 10.1109/12.5979, author = {N. Chandrasekharan and S.S. Iyengar}, title = {NC Algorithms for Recognizing Chordal Graphs and k Trees}, journal ={IEEE Transactions on Computers}, volume = {37}, number = {10}, issn = {00189340}, year = {1988}, pages = {11781183}, doi = {http://doi.ieeecomputersociety.org/10.1109/12.5979}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  NC Algorithms for Recognizing Chordal Graphs and k Trees IS  10 SN  00189340 SP1178 EP1183 EPD  11781183 A1  N. Chandrasekharan, A1  S.S. Iyengar, PY  1988 KW  chordal graph recognition; NC algorithms; k trees; parallel algorithms; PRAM; graph theory; parallel algorithms; trees (mathematics). VL  37 JA  IEEE Transactions on Computers ER   
[1] C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman, and M. Yannakakis, "Properties of acyclic database schemes," inProc. 13th Annu. ACM Symp. Theory Comput., 1981, pp. 355362.
[2] L. Beineke and R. Pippert, "Properties and characterizations ofk trees,"Mathematica, vol. 18, pp. 141151, 1971.
[3] P. Buneman, "The recovery of trees from measures of dissimilarity," inMathematics in the Archaeological and Historical Sciences. Edinburgh, Scotland: Edinburgh Univ., 1972, pp. 387395.
[4] N. Chandrasekharan, "New characterizations and algorithmic studies on chordal graphs andktrees," M.Sc. (Engg.) Thesis, School of Automation, Indian Instit. Sci., Bangalore, India, 1985.
[5] R. Chandrasekharan and A. Tamir, "Polynomially bounded algorithms for locating pcenters on a tree,"Math. Programming, vol. 22, pp. 304315, 1982.
[6] D. Corneil, "Algorithms for perfect graphs," inProc. IEEE Int. Symp. Circuits Syst., 1985, pp. 11871190.
[7] G. Dirac, "On rigid circuit graphs," inProc. Abh. Math. Sem., Univ. of Hamburg, vol. 25, 1961, pp. 7176.
[8] P. Duchet, "Classical perfect graphs," inTopics on Perfect Graphs, C. Berge and V. Chvatal Eds.,Ann. Disc. Math., vol. 21, pp. 6796 NorthHolland, 1984.
[9] A. Edenbrandt, "Combinatorial problems in matrix computation," Ph.D. dissertation, Cornell Univ., Ithaca, NY, July 1985.
[10] D. Foata, "Enumeratingktrees,"Disc. Math., vol. 1, pp. 181186, 1974.
[11] D. Fulkerson and O. Gross, "Incidence matrices and interval graphs,"Pac. J. Math., vol. 15, pp. 835855, 1965.
[12] F. Gavril, "The intersection graphs of subtrees in trees are exactly the chordal graphs,"J. Combin. Theory, B, vol. 16, pp. 4756, 1974.
[13] M. C. Golumbic,Algorithmic Graph Theory and Perfect Graphs. New York: Academic, 1980.
[14] F. Harary and E. Palmer, "On acyclic simplicial complexes,"Mathematica, vol. 15, pp. 115122, 1968.
[15] D. Helmbold and E. Mayr, "Perfect graphs and parallel algorithms," inProc. IEEE 1986 Int. Conf. Parallel Processing, Aug. 1986, to be published.
[16] D. Kozen, U. Vazirani, and V. Vazirani, "NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching," inProc. 5th Conf. FST&TCS, New Delhi, India, pp. 496503, 206,Lecture Notes in Computer Science, SpringerVerlag, 1985.
[17] J. Naor, M. Naor, and A, Schaffer, "Fast parallel algorithm for chordal graphs," inProc. Symp. Theory Comput., New York, May 1987.
[18] N. Pippenger, "On simultaneous resource bounds," inProc. 20th IEEE Symp. Foundations Comput. Sci., 1979, pp. 307311.
[19] A. Proskurowski, "Recursive graphs, recursive labelings and shortest paths,"SIAM J. Comput., vol. 10, pp. 391397, 1981.
[20] A. Proskurowski, "ktrees: Representations and distances," Tech. Rep., CISTR 805, Univ. Oregon, OR, 1980.
[21] A. Proskurowski, "Separating subgraphs inktrees: Cables and caterpillars,"Disc. Math., vol. 49, pp. 275285, 1984.
[22] D. Rose, "A graphtheoretic study of the numerical solution of sparse positive definite systems of linear equations," inGraph Theoryand Computing, R. Read, Ed. New York: Academic, 1972, pp. 183217.
[23] D. Rose, "On simple characterizations ofktrees,"Disc. Math., vol. 7, pp. 317322, 1974.
[24] D. Rose, R. E. Tarjan, and G. Lueker, "Algorithmic aspects of vertex elimination on graphs,"SIAM J. Comput., vol. 5, pp. 266283, 1976.
[25] D. Shier, "Some aspects of perfect elimination orderings in chordal graphs,"Disc. Appl. Math., vol. 7, pp. 325331, 1984.
[26] Y. Shiloach and U. Vishkin, "AnO(logn) parallel connectivity algorithm,"J. Algorithms, vol. 3, pp. 5767, 1982.
[27] R. Tarjan and M. Yannakakis, "Simple lineartime algorithms to test the chordality of graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergrahs,"SIAM J. Comput., vol. 13, pp. 566 579, 1984.
[28] U. Vishkin, "Implementation of simultaneousmemory accesses in models that forbid it,"J. Algorithms, vol. 4, pp. 4550, 1983.
[29] S. H. Whitesides, "An algorithm for finding clique cutsets,"Inform. Processing Lett., vol. 12, pp. 3132, 1981.
[30] N. Chandrasekharan, R. Laskar, and S. S. Iyengar, "Maximal cliqueseparators of chordal graphs and New separator theorems," inProc. South Eastern Combinatorial Conf., Boca Raton, FL, Feb. 1987.
[31] A. Mortra and S. S. Iyengar, "Parallel algorithms for some computation problems,"Adv. Comput., vol. 26, pp. 95153, 1987.