This Article 
 Bibliographic References 
 Add to: 
Minimum Complexity FIR Filters and Sparse Systolic Arrays
June 1988 (vol. 37 no. 6)
pp. 760-764
The properties of B-spline approximation and the integral/derivative properties of convolution lead to efficient algorithms for the implementation of multidimensional FIR filters. The implementations are of minimum time complexity under the Nyquist criterion. The algorithm can easily be implemented using a sparse systolic array architecture. The resulting B-spline convolvers have much lower cir

[1] J. Seidman, "Some practical applications of digital filtering in image processing,"Proc. Comput. Image Proc. Recognition, vol. 2, Aug. 1971.
[2] L. A. Ferrari, "Recursive binary valued image filters," Ph.D. dissertation, Dep. Elec. Eng., Univ. California, Irvine, 1980.
[3] L. A. Ferrari and J. Sklansky, "A fast recursive algorithm for binary valued two dimensional filters,"Comput. Vision, Graphics, Image Processing, vol. 26, pp. 292-302, 1984.
[4] L. A. Ferrari and J. Sklansky, "A note of Duhamel's theorem and the principle of inclusion and exclusion,"Comput. Vision, Graphics, Image Processing, vol. 29, pp. 358-360, 1985.
[5] L. A. Ferrari, P. V. Sankar, S. Shinnaka, and J. Sklansky, "Recursive algorithms for implementing digital image filters,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-9, pp. 461-466, May 1987.
[6] L. Ferrari, P. V. Sankar, J. Sklansky, and S. Leeman, "Efficient digital filters using B-spline approximations,"Comput. Vision, Graphics, Image Processing, vol. 35, pp. 152-165, 1986.
[7] H. T. Kung, "Why systolic architectures?,"Computer, vol. 15, pp. 37-46, Jan. 1982.
[8] L. R. Rabiner and R. W. Schafer,Digital Processing of Speech Signals. Englewood Cliffs, NJ: Prentice-Hall, 1978.
[9] H. T. Kung and R. L. Picard, "One-dimensional systolic arrays for multidimensional convolution and resampling," inVLSI for Pattern Recognition and Image Processing, K. S. Fu, Ed. Berlin, Germany: Springer-Verlag, 1984.

Index Terms:
minimum complexity FIR filters; integral properties; digital filters; sparse systolic arrays; B-spline approximation; derivative properties; minimum time complexity; Nyquist criterion; two-dimensional hardware implementation; approximation theory; digital filters; splines (mathematics).
L.A. Ferrari, P.V. Sankar, "Minimum Complexity FIR Filters and Sparse Systolic Arrays," IEEE Transactions on Computers, vol. 37, no. 6, pp. 760-764, June 1988, doi:10.1109/12.2219
Usage of this product signifies your acceptance of the Terms of Use.