This Article 
 Bibliographic References 
 Add to: 
On the Schur Decomposition of a Matrix for Parallel Computation
February 1987 (vol. 36 no. 2)
pp. 167-174
P.J. Eberlein, Department of Computer Science, State University of New York
An algorithm to solve the eigenproblem for nonsymmetric matrices on an N ? N array of mesh-connected processors, isomorphic to the architecture described by Brent and Luk for symmetric matrices, is presented. This algorithm is a generalization of the classical Jacobi method, and, as such, holds promise for parallel architectures. The rotational parameters for the nonsymmetric case are carefully analyzed; many examples of a working program, simulating the parallel architecture, are given with experimental evidence of quadratic convergence.
Index Terms:
parallel computation, Eigenvalues, Jacobi methods, mesh-connected processors, nonsymmetric matrices
P.J. Eberlein, "On the Schur Decomposition of a Matrix for Parallel Computation," IEEE Transactions on Computers, vol. 36, no. 2, pp. 167-174, Feb. 1987, doi:10.1109/TC.1987.1676879
Usage of this product signifies your acceptance of the Terms of Use.