The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - February (1987 vol.36)
pp: 167-174
P.J. Eberlein , Department of Computer Science, State University of New York
ABSTRACT
An algorithm to solve the eigenproblem for nonsymmetric matrices on an N ? N array of mesh-connected processors, isomorphic to the architecture described by Brent and Luk for symmetric matrices, is presented. This algorithm is a generalization of the classical Jacobi method, and, as such, holds promise for parallel architectures. The rotational parameters for the nonsymmetric case are carefully analyzed; many examples of a working program, simulating the parallel architecture, are given with experimental evidence of quadratic convergence.
INDEX TERMS
parallel computation, Eigenvalues, Jacobi methods, mesh-connected processors, nonsymmetric matrices
CITATION
P.J. Eberlein, "On the Schur Decomposition of a Matrix for Parallel Computation", IEEE Transactions on Computers, vol.36, no. 2, pp. 167-174, February 1987, doi:10.1109/TC.1987.1676879
14 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool