This Article 
 Bibliographic References 
 Add to: 
Minimally Testable Reed-Muller Canonical Forms
August 1980 (vol. 29 no. 8)
pp. 746-750
E.W. Page, Department of Computer Science, Clemson University
Arbitrary switching function realizations based upon Reed- Muller canonical (RMC) expansions have been shown to possess many of the desirable properties of easily testable networks. While realizations based upon each of the 2n possible RMC expansions of a given switching function can be tested for permanent stuck-at-0 and stuck-at-1 faults with a small set of input vectors, certain expansions lead to an even smaller test set because of the resulting network topology. In particular, the selection of an RMC expansion that has a minimal number of literals appearing in an even number of product terms will give rise to switching function realizations requiring still fewer tests. This correspondence presents a solution to the problem of selecting the RMC expansion of a given switching function possessing the smallest test set.
Index Terms:
switching theory, Easily testable networks, fault detection, logic design
E.W. Page, "Minimally Testable Reed-Muller Canonical Forms," IEEE Transactions on Computers, vol. 29, no. 8, pp. 746-750, Aug. 1980, doi:10.1109/TC.1980.1675661
Usage of this product signifies your acceptance of the Terms of Use.