This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Computation Model of Parallel Solution of Linear Equations
July 1980 (vol. 29 no. 7)
pp. 632-638
O. Wing, Department of Electrical Engineering, Columbia University
The solution process of Ax = b is modeled by an acyclic directed graph in which the nodes represent the arithmetic operations applied to the elements of A, and the arcs represent the precedence relations that exist among the operations in the solution process. Operations that can be done in parallel are identified in the model and the absolute minimum completion time and lower bounds on the minimum number of processors required to solve the equations in minimal time can be found from it. Properties of the model are derived. Hu's level scheduling strategy is applied to examples of sparse matrix equations with surprisingly good results. Speed-up using parallel processing is found to be proportional to the number of processors when it is 10-20 percent of the order of A.
Index Terms:
parallel processing, Computation model, parallel computation, parallel solution of linear equations
Citation:
O. Wing, J.W. Huang, "A Computation Model of Parallel Solution of Linear Equations," IEEE Transactions on Computers, vol. 29, no. 7, pp. 632-638, July 1980, doi:10.1109/TC.1980.1675634
Usage of this product signifies your acceptance of the Terms of Use.