The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.10 - October (1971 vol.20)
pp: 1203-1207
ABSTRACT
The general problem of the use of context in computer character recognition is briefly reviewed. For the special case where the context is generated by a two-state stationary Markov chain, upper bounds are obtained for the average error probability of an optimal recognition procedure, based on compound decision functions. These bounds are nonparametric and simple functions of the "differences" between: 1) the a priori and transition probabilities of the context, and 2) the distributions of the measurements used to identify the characters. Some justiflcations, applications to systems design, and illustrative examples are given. An improvement is also obtained on a previously derived upper bound for procedures using no context.
INDEX TERMS
Character recognition, contextual recognition, decision functions, error probability, Markov chains, pattern recognition, upper bounds and approximations.
CITATION
J.T. Chu, "Error Bounds for a Contextual Recognition Procedure", IEEE Transactions on Computers, vol.20, no. 10, pp. 1203-1207, October 1971, doi:10.1109/T-C.1971.223106
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool