The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - May (1970 vol.19)
pp: 421-428
ABSTRACT
Some parameters related to the computational complexity of partitioned list algorithms are evaluated. Specifically, an upper bound is computed for the average number of comparisons needed by the most unsophisticated version of a partitioned list algorithm for processing a Boolean function in v variables and u canonical clauses. For the same functions the average memory size required for processing is also computed. Furthermore the minimum memory size necessary for processing any Boolean function in u canonical clauses by either a partitioned or a nonpartitioned list algorithm is computed. Results obtained from the above comparisons demonstrate that partitioned list algorithms compare favorably with nonpartitioned ones both with regard to the time and the memory required for computation.
INDEX TERMS
Boolean functions, computational complexity, computing time, maximum number of k cubes, memory area, minimization, partitioned list, prime implicants, Quine-McCluskey algorithm.
CITATION
E. Morreale, "Computational Complexity of Partitioned List Algorithms", IEEE Transactions on Computers, vol.19, no. 5, pp. 421-428, May 1970, doi:10.1109/T-C.1970.222940
32 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool