The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - Jan.-Feb. (2013 vol.10)
pp: 135-150
A. Axenopoulos , Dept. of Comput. & Commun. Eng., Univ. of Thessaly, Volos, Greece
P. Daras , Centre for Res. & Technol. Hellas, Inf. Technol. Inst., Thessaloniki, Greece
G. E. Papadopoulos , Dept. of Biochem. & Biotechnol., Univ. of Thessaly, Larissa, Greece
E. N. Houstis , Dept. of Comput. & Commun. Eng., Univ. of Thessaly, Volos, Greece
ABSTRACT
In this paper, a framework for protein-protein docking is proposed, which exploits both shape and physicochemical complementarity to generate improved docking predictions. Shape complementarity is achieved by matching local surface patches. However, unlike existing approaches, which are based on single-patch or two-patch matching, we developed a new algorithm that compares simultaneously, groups of neighboring patches from the receptor with groups of neighboring patches from the ligand. Taking into account the fact that shape complementarity in protein surfaces is mostly approximate rather than exact, the proposed group-based matching algorithm fits perfectly to the nature of protein surfaces. This is demonstrated by the high performance that our method achieves especially in the case where the unbound structures of the proteins are considered. Additionally, several physicochemical factors, such as desolvation energy, electrostatic complementarity (EC), hydrophobicity (HP), Coulomb potential (CP), and Lennard-Jones potential are integrated using an optimized scoring function, improving geometric ranking in more than 60 percent of the complexes of Docking Benchmark 2.4.
INDEX TERMS
Proteins, Shape, Bioinformatics, Computational biology, Electric potential, Iterative closest point algorithm, Electrostatics,physicochemical complementarity, Protein docking, local descriptors, shape complementarity
CITATION
A. Axenopoulos, P. Daras, G. E. Papadopoulos, E. N. Houstis, "SP-Dock: Protein-Protein Docking Using Shape and Physicochemical Complementarity", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.10, no. 1, pp. 135-150, Jan.-Feb. 2013, doi:10.1109/TCBB.2012.149
REFERENCES
[1] D.W. Richie, “Recent Progress and Future Directions in Protein-Protein Docking,” Current Protein and Peptide Science, vol. 9, pp. 1-15, 2008.
[2] J.C. Camacho, D.W. Gatchell, S.R. Kimura, and S. Vajda, “Scoring Docked Conformations Generated by Rigid Body Protein-Protein Docking,” Proteins: Structure, Function, and Genetics, vol. 40, pp. 525-537, 2000.
[3] R. Chen and Z. Weng, “Docking Unbound Proteins Using Shape Complementarity, Desolvation, and Electrostatics,” Proteins: Structure, Function and Genetics, vol. 47, pp. 281-294, 2002.
[4] P. Carter, V.A. Lesk, S.A. Islam, and M.J.E. Sternberg, “Protein-Protein Docking Using 3D-Dock in Rounds 3, 4, and 5 of CAPRI,” Proteins: Structure, Function, and Bioinformatics, vol. 60, pp. 281-288, 2005.
[5] D. Kozakov, R. Brenke, S.R. Comeau, and S. Vajda, Proteins: Structure Function, and Bioinformatics, vol. 65, pp. 392-406, 2006.
[6] M. Eisenstein and E. Katchalski-Katzir, Comptes Rendus Biologies, vol. 327, pp. 409-420, 2004.
[7] D.W. Ritchie and G.J.L. Kemp, “Protein Docking Using Spherical Polar Fourier Correlations,” Proteins: Structure, Function, and Genetics, vol. 39, no. 2, pp. 178-194, 2000.
[8] D. Duhovny, R. Nussinov, and H.J. Wolfson, “Efficient Unbound Docking of Rigid Molecules,” Proc. Second Workshop Algorithms in Bioinformatics, pp. 185-200, 2002.
[9] Z. Shentu, M.A. Hasan, C. Bystroff, and M.J Zaki, “Context Shapes: Efficient Complementary Shape Matching for Protein-Protein Docking,” Proteins: Structure, Function, and Bioinformatics, vol. 70, no. 3, pp. 1056-1073, Feb. 2008.
[10] R. Chen and Z. Weng, “ZDOCK: An Initial-Stage Protein-Docking Algorithm,” Proteins: Structure, Function, and Genetics, vol. 52, pp. 80-87, 2003.
[11] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne, “The Protein Data Bank,” Nucleic Acids Research, vol. 28, pp. 235-242, 2000.
[12] M.L. Connolly, “Solvent-Accessible Surfaces of Proteins and Nucleic Acids,” Science, vol. 221, pp. 709-713, 1983.
[13] M.F. Sanner, A.J. Olson, and J.-C. Spehner, “Fast and Robust Computation of Molecular Surfaces,” Proc. 11th ACM Symp. Computational Geometry, 1995.
[14] D. Fischer, S.L. Lin, H.L. Wolfson, and R. Nussinov, “A Geometry-Based Suite of Molecular Docking Processes,” J. Molecular Biology, vol. 248, pp. 459-477, 1995.
[15] A. Mademlis, P. Daras, D. Tzovaras, and M.G. Strintzis, “3D Object Retrieval Based on Resulting Fields,” Proc. 29th Int'l Conf. Workshop 3D Object Retrieval (EUROGRAPHICS '08), Apr. 2008.
[16] H. Ling and K. Okada, “Diffusion Distance for Histogram Comparison,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition (CVPR '06), pp. 246-253, 2006.
[17] J. Mintseris, K. Wiehe, B. Pierce, R. Anderson, R. Chen, J. Janin, and Z. Weng, “Protein-Protein Docking Benchmark 2.0: An Update,” Proteins: Structure, Function, and Genetics, vol. 60, no. 2, pp. 214-216, 2005.
[18] R. Chen, J. Mintseris, J. Janin, and Z. Weng, “A Protein-Protein Docking Benchmark,” Proteins: Structure, Function, and Genetics, vol. 52, no. 1, pp. 88-91, 2003.
[19] B. Pierce and Z. Weng, “ZRANK: Reranking Protein Docking Predictions with an Optimized Energy Function,” Proteins: Structure, Function, and Bioinformatics, vol. 67, pp. 1078-1086, 2007.
[20] T. Geppert, E. Proschak, and G. Schneider, “Protein-Protein Docking by Shape-Complementarity and Property Matching,” J. Computational Chemistry, vol. 31, no. 9, pp. 1919-1928, 2010.
[21] H. Edelsbrunner and E.P. Miicke, “Three-Dimensional Alpha Shapes,” Proc. Workshop Vol. Visualization (VVS '92), pp 75-82, 1992.
[22] Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué, H.V. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens, H. Tabia, and D. Vandermeulen, “SHREC '11 Track: Shape Retrieval on Non-Rigid 3D Watertight Meshes,” Proc. Eurographics Workshop 3D Object Retrieval, Apr. 2011.
[23] G. Lavoué, “Bag of Words and Local Spectral Descriptor for 3D Partial Shape Retrieval,” Proc. Eurographics Workshop 3D Object Retrieval, Apr. 2011.
[24] B. Vallet and B. Levy, “Spectral Geometry Processing with Manifold Harmonics,” Computer Graphics Forum, vol. 27, no. 2, pp. 251-260, 2008.
[25] M. Reuter, F.-E. Wolter, and N. Peinecke, “Laplace-Beltrami Spectra as “Shape-DNA” of Surfaces and Solids,” Computer-Aided Design, vol. 38, no. 4, pp.342-366, 2006.
[26] C. Zhang, G. Vasmatzis, J.L. Cornette, and C. DeLisi, “Determination of Atomic Desolvation Energies from the Structures of Crystallized Proteins,” J. Molecular Biology, vol. 267, pp. 707-726, 1997.
[27] F. Glaser, D.M. Steinberg, I.A. Vakser, and N. Ben-Tal, “Residue Frequencies and Pairing Preferences at Protein-Protein Interfaces,” Proteins, vol. 43, no. 2, pp. 89-102, May 2001.
[28] M. Berrera, H. Molinari, and F. Fogolari, “Amino Acid Empirical Contact Energy Definitions for Fold Recognition in the Space of Contact Maps,” BMC Bioinformatics, vol. 4, p. 8, 2003.
[29] G. Ausiello, G. Cesareni, and M. Helmer-Citterich, “ESCHER: A New Docking Procedure Applied to the Reconstruction of Protein Tertiary Structure,” Proteins, vol. 28, no. 4, pp. 556-567, 1997.
[30] N.P. Palma, L. Krippahl, J.E. Wampler, and J.J.G. Moura, “BiGGER: A New (Soft) Docking Algorithm for Predicting Protein Interactions,” Proteins: Structure, Function, and Bioinformatics, vol. 39, pp. 372-384, 2000.
[31] R. Norel, D. Petrey, H.J. Wolfson, and R. Nussinov, “Examination of Shape Complementarity in Docking of Unbound Proteins,” Proteins, vol. 36, pp. 307-317, 1999.
[32] V. Venkatraman, Y. Yang, L. Sael, and D. Kihara, “Protein-Protein Docking Using Region-Based 3D Zernike Descriptors,” BMC Bioinformatics, vol. 10, p. 407, 2009.
[33] S. Gu, P. Koehl, J. Hass, and N. Amenta, “Surface-Histogram: A New Shape Descriptor for Protein-Protein Docking,” Proteins, vol. 80, pp. 221-238, 2012.
[34] C. Bajaj, R. Chowdhury, and V. Siddavanahalli, “${\rm F}^2{\rm Dock}$ : Fast Fourier Protein-Protein Docking,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 8, no. 1, pp. 45-58, Jan./Feb. 2011.
[35] A. Axenopoulos, P. Daras, G. Papadopoulosd, and E. Houstis, “A Shape Descriptor for Fast Complementarity Matching in Molecular Docking,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 8, no. 6, pp. 1441-1457, Nov./Dec. 2011.
[36] A. Axenopoulos, P. Daras, G. Papadopoulos, and E. Houstis, “3D Protein-Protein Docking Using Shape Complementarity and Fast Alignment,” Proc. IEEE Int'l Conf. Image Processing, Sept. 2011.
[37] P.J. Besl and N.D. McKay, “Reconstruction of Real-World Objects via Simultaneous Registration and Robust Combination of Multiple Range Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256, 1992.
[38] Particle Swarm Optimization, http://www.swarmintelligence. orgtutorials.php , 2012.
[39] A. Mademlis, P. Daras, D. Tzovaras, and M.G. Strintzis, “3D Object Retrieval using the 3D Shape Impact Descriptor,” Pattern Recognition, vol. 42, no. 11, pp. 2447-2459, Nov. 2009.
[40] J. Janin, K. Henrick, J. Moult, L.T. Eyck, M.J. Sternberg, S. Vajda, I. Vakser, and S.J. Wodak, “CAPRI: A Critical Assessment of Predicted Interactions,” Proteins, vol. 52, pp. 2-9, 2003.
[41] E. Mashiach, D. Schneidman-Duhovny, A. Peri, Y. Shavit, R. Nussinov, and H.J. Wolfson, “An Integrated Suite of Fast Docking Algorithms,” Proteins, vol. 78, no. 15, pp. 3197-3204, Nov. 2010.
[42] H. Hwang, T. Vreven, B.G. Pierce, J. Hung, and Z. Weng, “Performance of ZDOCK and ZRANK in CAPRI rounds 13-19,” Proteins: Structure, Function, and Bioinformatics, vol. 78, no. 15, pp. 3104-3110, Nov. 2010.
36 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool