This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Symmetry Compression Method for Discovering Network Motifs
Nov.-Dec. 2012 (vol. 9 no. 6)
pp. 1776-1789
Jianxin Wang, Sch. of Inf. Eng. & Sci., Central South Univ., Changsha, China
Yuannan Huang, Sch. of Inf. Eng. & Sci., Central South Univ., Changsha, China
Fang-Xiang Wu, Dept. of Mech. Eng., Univ. of Saskatchewan, Saskatoon, SK, Canada
Yi Pan, Dept. of Comput. Sci., Georgia State Univ., Atlanta, GA, USA
Discovering network motifs could provide a significant insight into systems biology. Interestingly, many biological networks have been found to have a high degree of symmetry (automorphism), which is inherent in biological network topologies. The symmetry due to the large number of basic symmetric subgraphs (BSSs) causes a certain redundant calculation in discovering network motifs. Therefore, we compress all basic symmetric subgraphs before extracting compressed subgraphs and propose an efficient decompression algorithm to decompress all compressed subgraphs without loss of any information. In contrast to previous approaches, the novel Symmetry Compression method for Motif Detection, named as SCMD, eliminates most redundant calculations caused by widespread symmetry of biological networks. We use SCMD to improve three notable exact algorithms and two efficient sampling algorithms. Results of all exact algorithms with SCMD are the same as those of the original algorithms, since SCMD is a lossless method. The sampling results show that the use of SCMD almost does not affect the quality of sampling results. For highly symmetric networks, we find that SCMD used in both exact and sampling algorithms can help get a remarkable speedup. Furthermore, SCMD enables us to find larger motifs in biological networks with notable symmetry than previously possible.
Index Terms:
symmetry,bioinformatics,graph theory,molecular biophysics,proteins,highly symmetric networks,symmetry compression method,network motif discovery,systems biology,automorphism,biological network topology,basic symmetric subgraphs,decompression algorithm,motif detection,Biological information theory,Computational biology,Bioinformatics,decompression,Network motif,biological network,symmetry,compression,subgraph enumeration,graph isomorphism
Citation:
Jianxin Wang, Yuannan Huang, Fang-Xiang Wu, Yi Pan, "Symmetry Compression Method for Discovering Network Motifs," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 6, pp. 1776-1789, Nov.-Dec. 2012, doi:10.1109/TCBB.2012.119
Usage of this product signifies your acceptance of the Terms of Use.