The Community for Technology Leaders
RSS Icon
Issue No.03 - May-June (2012 vol.9)
pp: 934-939
Italo Zoppis , Università degli Studi di Milano-Bicocca, Milan
Erica Gianazza , Università degli Studi di Milano-Bicocca, Monza
Massimiliano Borsani , Università degli Studi di Milano-Bicocca, Monza
Clizia Chinello , Università degli Studi di Milano-Bicocca, Monza
Veronica Mainini , Università degli Studi di Milano-Bicocca, Monza
Carmen Galbusera , Università degli Studi di Milano-Bicocca, Monza
Carlo Ferrarese , Ospedale San Gerardo, Monza
Gloria Galimberti , Ospedale San Gerardo, Monza
Sandro Sorbi , Università degli Studi di Firenze, Florence
Barbara Borroni , Università degli Studi di Brescia, Brescia
Fulvio Magni , Università degli Studi di Milano-Bicocca, Monza
Marco Antoniotti , Università degli Studi di Milano-Bicocca, Milan
Giancarlo Mauri , Università degli Studi di Milano-Bicocca, Milan
"Signal” alignments play critical roles in many clinical setting. This is the case of mass spectrometry (MS) data, an important component of many types of proteomic analysis. A central problem occurs when one needs to integrate (MS) data produced by different sources, e.g., different equipment and/or laboratories. In these cases, some form of "data integration” or "data fusion” may be necessary in order to discard some source-specific aspects and improve the ability to perform a classification task such as inferring the "disease classes” of patients. The need for new high-performance data alignments methods is therefore particularly important in these contexts. In this paper, we propose an approach based both on an information theory perspective, generally used in a feature construction problem, and the application of a mathematical programming task (i.e., the weighted bipartite matching problem). We present the results of a competitive analysis of our method against other approaches. The analysis was conducted on data from plasma/ethylenediaminetetraacetic acid of "control” and Alzheimer patients collected from three different hospitals. The results point to a significant performance advantage of our method with respect to the competing ones tested.
Optimization, information theory, medicine, medical informatics, proteomics, data integration, graph algorithms.
Italo Zoppis, Erica Gianazza, Massimiliano Borsani, Clizia Chinello, Veronica Mainini, Carmen Galbusera, Carlo Ferrarese, Gloria Galimberti, Sandro Sorbi, Barbara Borroni, Fulvio Magni, Marco Antoniotti, Giancarlo Mauri, "Mutual Information Optimization for Mass Spectra Data Alignment", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.9, no. 3, pp. 934-939, May-June 2012, doi:10.1109/TCBB.2011.80
[1] R.N. Kalaria, G.E. Maestre, R. Arizaga, R.P. Friedland, D. Galasko, K. Hall, J.A. Luchsinger, A. Ogunniyi, E.K. Perry, F. Potocnik, M. Prince, R. Stewart, A. Wimo, Z.X. Zhang, and P. Antuono, "World Federation of Neurology Dementia Research Group. Alzheimer's Disease and Vascular Dementia in Developing Countries: Prevalence, Management, and Risk Factors," Lancet Neurology, vol. 7, no. 9, pp. 812-826, 2008.
[2] R.J. Caselli, T.G. Beach, R. Yaari, and E.M. Reiman, "Alzheimer's Disease a Century Later," J. Clinical Psychiatry, vol. 67, pp. 1784-1800, 2007.
[3] S. Small and K. Duff, "Linking Abeta and Tau in Late-Onset Alzheimer's Disease: A Dual Pathway Hypothesis," Neuron, vol. 60, no. 4, pp. 534-542, 2008.
[4] T. Wyss-Coray, "Inflammation in Alzheimer Disease: Driving Force, Bystander or Beneficial Response?," Nature Medicine, vol. 12, no. 9, pp. 1005-1015, 2006.
[5] D. Praticò, "Evidence of Oxidative Stress in Alzheimer's Disease Brain and Antioxidant Therapy: Lights and Shadows," Annals of New York Academy of Sciences, vol. 1147, pp. 70-78, 2008.
[6] E. Koutsilieri and P. Riederer, "Excitotoxicity and New Antiglutamatergic Strategies in Parkinson's Disease and Alzheimer's Disease," Parkinsonism and Related Disorders, vol. 13, pp. S329-S331, 2007.
[7] S. Ray, M. Britschgi, C. Herbert, Y. Takeda-Uchimura, A. Boxer, K. Blennow, L. Friedman, D. Galasko, M. Jutel, A. Karydas, J.A. Kaye, J. Leszek, B.L. Miller, L. Minthon, J.F. Quinn, G.D. Rabinovici, W.H. Robinson, M.N. Sabbagh, Y.T. So, D.L. Sparks, M. Tabaton, J. Tinklenberg, J.A. Yesavage, R. Tibshirani, and T. Wyss-Coray, "Classification and Prediction of Clinical Alzheimer's Diagnosis Based on Plasma Signaling Proteins," Nature Medicine, vol. 13, no. 11, pp. 1359-1362, 2007.
[8] M. Latterich, M. Abramovitz, and B. Leyland-Jones, "Proteomics: New Technologies and Clinical Applications," European J. Cancer, vol. 44, pp. 2737-2741, 2008.
[9] K. Landers, M. Burger, M. Tebay, D. Purdie, B. Scells, H. Samaratunga, M. Lavin, and R. Gardiner, "Use of Multiple Biomarkers for a Molecular Diagnosis of Prostate Cancer," Int'l J. Cancer, vol. 114, pp. 950-956, 2005.
[10] D.M. Good, V. Thongboonkerd, J. Novak, J.L. Bascands, J.P. Schanstra, J.J. Coon, A. Dominiczak, and H. Mischak, "Body Fluid Proteomics for Biomarker Discovery: Lessons from the Past Hold the Key to Success in the Future," J. Proteome Research, vol. 6, no. 12, pp. 4549-4555, 2007.
[11] M.E.D. Noo, B.J. Mertens, A. Ozalp, M.R. Bladergroen, M.P. van der Werff, C.J. van de Velde, A.M. Deelder, and R.A. Tollenaar, "Detection of Colorectal Cancer Using Maldi-Tof Serum Protein Profiling," European J. Cancer, vol. 42, no. 8, pp. 1068-1076, 2006.
[12] G.L. Freed, L. Cazers, C. Fichandler, T. Fuller, C. Sawyer, B.C.J. Stack, S. Schraff, O.J. Semmes, J.T. Wadsworth, and R. Drake, "Differential Capture of Serum Proteins for Expression Profiling and Biomarker Discovery in Pre- and Posttreatment Head and Neck Cancer Samples," Laryngoscope, vol. 118, no. 1, pp. 61-68, 2008.
[13] N. Bosso, C. Chinello, S. Picozzi, E. Gianazza, V. Mainini, C. Galbusera, F. Raimondo, R. Perego, S. Casellato, F. Rocco, S. Ferrero, S. Bosari, P. Mocarelli, M.G. Kienle, and F. Magni, "Human Urine Biomarkers of Renal Cell Carcinoma Evaluated by Clinprot," Proteomics—Clinical Application, vol. 2, nos. 7/8, pp. 1036-1046, 2008.
[14] N. Barbarini, P. Magni, and R. Bellazzi, "A New Approach for the Analysis of Mass Spectrometry Data for Biomarker Discovery," Proc. AMIA Ann. Symp., pp. 26-30, 2006.
[15] H. Hotelling, "Relation between Two Sets of Variates," Biometrika, vol. 28, pp. 321-377, 1936.
[16] W.W. Hsieh, "Nonlinear Canonical Correlation Analysis by Neural Networks," Neural Networks, vol. 13, pp. 1095-1105, 2000.
[17] P.A. Viola, W.M. WellsIII, "Alignment by Maximization of Mutual Information," Int'l J. Computer Vision, vol. 24, no. 2, pp. 137-154, 1997.
[18] T. Cover and J. Thomas, Elements of Information Theory, Wiley, 2000.
[19] M. Hilario, A. Kalousis, M. Mller, and C. Pellegrini, "Machine Learning Approaches to Lung Cancer Prediction from Mass Spectra," Proteomics, vol. 3, no. 9, pp. 1716-1719, 2003.
[20] K. Torkkola, "Feature Extraction by Non-Parametric Mutual Information Maximization," J. Machine Learning Research, vol. 3, pp. 1415-1438, 2003.
[21] Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing), I. Guyon, S. Gunn, M. Nikravesh, and L.A. Zadeh, eds., Springer, 2006.
[22] L. Lovász and M. Plummer, Matching Theory. Akadémiai Kiadó, 1986.
[23] J.A. McHugh, Algorithmic Graph Theory. Prentice Hall, 1990.
[24] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, "YALE: Rapid Prototyping for Complex Data Mining Tasks," KDD '06: Proc. 12th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, L. Ungar, M. Craven, D. Gunopulos, and T. Eliassi-Rad, eds., pp. 935-940, 2006.
[25] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. MIT Press, 1990.
[26] N. Cristianini and J. Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge Univ. Press, 2000.
[27] I. Zoppis, E. Gianazza, C. Chinello, V. Mainini, C. Galbusera, C. Ferrarese, G. Galimberti, A. Sorbi, B. Borroni, F. Magni, and G. Mauri, "A Mutual Information Approach to Data Integration for Alzheimer's Disease Patients," Lecture Notes in Computer Science, pp. 431-435, Springer, 2009.
[28] J. Davis and M. Goadrich, "The Relationship between Precision-Recall and Roc Curves," Proc. 23rd Int'l Conf. Machine Learning (ICML '06), pp. 233-240, 2006.
119 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool