This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Quantitative Analysis of the Self-Assembly Strategies of Intermediate Filaments from Tetrameric Vimentin
May-June 2012 (vol. 9 no. 3)
pp. 885-898
E. Czeizler, Comput. Syst. Biol. Lab., Univ. of Helsinki, Helsinki, Finland
A. Mizera, Inst. of Fundamental Technol. Res., Warsaw, Poland
E. Czeizler, Sch. of Sci., Dept. of Inf. & Comput. Sci., Aalto Univ., Aalto, Finland
R-J Back, Dept. of Inf. Technol., Abo Akademi Univ., Turku, Finland
J. E. Eriksson, Turku Centre for Biotechnol., Abo Akademi Univ., Turku, Finland
I. Petre, Dept. of Inf. Technol., Abo Akademi Univ., Turku, Finland
In vitro assembly of intermediate filaments from tetrameric vimentin consists of a very rapid phase of tetramers laterally associating into unit-length filaments and a slow phase of filament elongation. We focus in this paper on a systematic quantitative investigation of two molecular models for filament assembly, recently proposed in (Kirmse et al. J. Biol. Chem. 282, 52 (2007), 18563-18572), through mathematical modeling, model fitting, and model validation. We analyze the quantitative contribution of each filament elongation strategy: with tetramers, with unit-length filaments, with longer filaments, or combinations thereof. In each case, we discuss the numerical fitting of the model with respect to one set of data, and its separate validation with respect to a second, different set of data. We introduce a high-resolution model for vimentin filament self-assembly, able to capture the detailed dynamics of filaments of arbitrary length. This provides much more predictive power for the model, in comparison to previous models where only the mean length of all filaments in the solution could be analyzed. We show how kinetic observations on low-resolution models can be extrapolated to the high-resolution model and used for lowering its complexity.

[1] M. Schliwa, The Cytoskeleton, Cell Biology Monographs, vol. 13. Springer-Verlag, 1986.
[2] E. Lazarides, "Intermediate Filaments as Mechanical Integrators of Cellular Space," Nature, vol. 283, no. 5744, pp. 249-256, 1980.
[3] H. Herrmann and U. Aebi, "Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration into Functionally Distinct Intracellular Scaffolds," Ann. Rev. of Biochemistry, vol. 73, pp. 749-789, 2004.
[4] G. Bonne, M.R.D. Barletta, S. Varnous, H.-M. Bécane, E.-H. Hammouda, L. Merlini, F. Muntoni, C.R. Greenberg, F. Gary, J.-A. Urtizberea, D. Duboc, M. Fardeau, D. Toniolo, and K. Schwartz, "Mutations in the Gene Encoding lamin A/C Cause Autosomal Dominant Emery-Dreifuss Muscular Dystrophy," Nature Genetics, vol. 21, pp. 285-288, 1999.
[5] D. Fatkin, C. MacRae, T. Sasaki, M.R. Wolff, M. Porcu, M. Frenneaux, J. Atherton, H.J. Vidaillet, S. Spudich, U.D. Girolami, J.G. Seidman, C. Seidman, F. Muntoni, G. Müehle, W. Johnson, and B. McDonough, "Missense Mutations in the Rod Domain of the Lamin A/C Gene as Causes of Dilated Cardiomyopathy and Conduction-System Disease," New England J. Medicine, vol. 341, no. 23, pp. 1715-1724, 1999.
[6] H.J. Worman and J.C. Courvalin, "The Nuclear Lamina and Inherited Disease," Trends in Cell Biology, vol. 12, pp. 591-598, 2002.
[7] K.C. Holmes, D. Popp, W. Gebhard, and W. Kabsch, "Atomic Model of the Actin Filament," Nature, vol. 347, pp. 44-49, 1990.
[8] M.O. Steinmetz, D. Stoffler, A. Hoenger, A. Bremer, and U. Aebi, "Actin: From Cell Biology to Atomic Detail," J. Structural Biology, vol. 119, pp. 295-320, 1997.
[9] E. Nogales and K.H. Downing, "Tubulin and Microtubule Structures," The Role of Microtubules in Cell Biology, Neurobiology, and Oncology, T. Fojo, ed., Humana Press, 2008.
[10] H. Herrmann, M. Häner, M. Brettel, N.-O. Ku, and U. Aebi, "Characterization of Distinct Early Assembly Units of Different Intermediate Filament Proteins," J. Molecular Biology, vol. 286, no. 5, pp. 1403-1420, 1999.
[11] H. Herrmann, H. Bär, L. Kreplak, S.V. Strelkov, and U. Aebi, "Intermediate Filaments: From Cell Architecture to Nanomechanics," Nature Rev. Molecular Cell Biology, vol. 8, pp. 562-573, 2007.
[12] R. Kirmse, S. Portet, N. Mücke, U. Aebi, H. Herrmann, and J. Langowski, "A Quantitative Kinetic Model for the in vitro Assembly of Intermediate Filaments from Tetrameric Vimentin," J. Biological Chemistry, vol. 282, no. 52, pp. 18563-18572, 2007.
[13] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and U. Kummer, "COPASI - A COmplex PAthway SImulator," Bioinformatics, vol. 22, no. 24, pp. 3067-3074, 2006.
[14] R. Kirmse, personal communication, 2008.
[15] S. Ando, K. ichiro Nakao, R. Gohara, Y. Takasaki, K. Suehiro, and Y. Oishi, "Morphological Analysis of Glutaraldehyde-Fixed Vimentin Intermediate Filaments and Assembly-Intermediates by Atomic Force Microscopy," Biochimica et Biophysica Acta, vol. 1702, no. 1, pp. 53-65, 2004.
[16] S.M. Baker, K. Schallau, and B.H. Junker, "Comparison of Different Algorithms for Simultaneous Estimation of Multiple Parameters in Kinetic Metabolic Models," J. Integrative Bioinformatics, vol. 7, no. 3, pp. 1-9, 2010.
[17] P. Mendes and D. Kell, "Non-Linear Optimization of Biochemical Pathways: Applications to Metabolic Engineering and Parameter Estimation," Bioinformatics, vol. 14, no. 10, pp. 869-883, 1998.
[18] C.G. Moles, P. Mendes, and J.R. Banga, "Parameter Estimation in Biochemical Pathways: A Comparison of Global Optimization Methods," Genome Research, vol. 13, pp. 2467-2474, 2003.
[19] I.E. Grossmann, Global Optimization in Engineering Design. Kluwer Academic Publishers, 1996.
[20] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches. Springer-Verlag, 1990.
[21] M.M. Ali, C. Storey, and A. Törn, "Application of Stochastic Global Optimization Algorithms to Practical Problems," J. Optimization Theory and Applications, vol. 95, no. 3, pp. 545-563, 1997.
[22] C. Guus, E. Boender, and H.E. Romeijn, "Stochastic Methods," Handbook of Global Optimization, R. Horst and P.M. Pardalos, eds., Kluwer Academic Publishers, 1995.
[23] P. Mendes, S. Hoops, S. Sahle, R. Gauges, J.O. Dada, and U. Kummer, "Computational Modeling of Biochemical Networks Using COPASI," Methods in Molecular Biology, vol. 500, pp. 17-59, 2009.
[24] S. Sahle, R. Gauges, J. Pahle, N. Simus, U. Kummer, S. Hoops, C. Lee, M. Singhal, L. Xu, and P. Mendes, "Simulation of Biochemical Networks Using COPASI: A Complex Pathway Simulator," Proc. 38th Conf. Winter Simulation (WSC '06), pp. 1698-1706, 2006.
[25] M. Kühnel, L.S. Mayorga, T. Dandekar, J. Thakar, R. Schwarz, E. Anes, G. Griffiths, and J. Reich, "Modelling Phagosomal Lipid Networks that Regulate Actin Assembly," BMC Systems Biology, vol. 2, article 107, 2008.
[26] L. Lok and R. Brent, "Automatic Generation of Cellular Reaction Networks with Moleculizer 1.0," Nature Biotechnology, vol. 23, pp. 131-136, 2005.

Index Terms:
self-assembly,molecular biophysics,physiological models,proteins,extrapolation,quantitative analysis,self-assembly strategy,intermediate filaments,molecular models,in-vitro assembly,filament assembly,mathematical modeling,filament elongation strategy,unit-length filaments,numerical model fitting,high-resolution model,vimentin filament self-assembly,low-resolution model,Assembly,Numerical models,Mathematical model,Computational modeling,Data models,Proteins,Biological system modeling,filament length distribution.,Mathematical modeling,protein self-assembly,quantitative self-assembly strategies,model resolution,sensitivity analysis
Citation:
E. Czeizler, A. Mizera, E. Czeizler, R-J Back, J. E. Eriksson, I. Petre, "Quantitative Analysis of the Self-Assembly Strategies of Intermediate Filaments from Tetrameric Vimentin," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 3, pp. 885-898, May-June 2012, doi:10.1109/TCBB.2011.154
Usage of this product signifies your acceptance of the Terms of Use.