
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Paul Phipps, Sergey Bereg, "Optimizing Phylogenetic Networks for Circular Split Systems," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 2, pp. 535547, March/April, 2012.  
BibTex  x  
@article{ 10.1109/TCBB.2011.109, author = {Paul Phipps and Sergey Bereg}, title = {Optimizing Phylogenetic Networks for Circular Split Systems}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {9}, number = {2}, issn = {15455963}, year = {2012}, pages = {535547}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2011.109}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Optimizing Phylogenetic Networks for Circular Split Systems IS  2 SN  15455963 SP535 EP547 EPD  535547 A1  Paul Phipps, A1  Sergey Bereg, PY  2012 KW  Computational biology KW  phylogenetic network KW  minimizing faces KW  split network KW  network optimization. VL  9 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] D.H. Huson and C. Scornavacca, “A Survey of Combinatorial Methods for Phylogenetic Networks,” Genome Biology and Evolution, vol. 3, pp. 2335, 2011.
[2] L. Bao and S. Bereg, “Clustered Splitsnetworks,” Proc. Second Ann. Int'l Conf. Combinatorial Optimization and Applications (COCOOA '08), pp. 469478, 2008.
[3] D. Gusfield, S. Eddhu, and C. Langley, “Optimal, Efficient Reconstruction of Phylogenetic Networks with Constrained Recombination,” J. Bioinformatics and Computational Biology, vol. 2, no. 1, pp. 173213, 2004.
[4] D. Gusfield and V. Bansal, “A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters,” Proc. Research in Computational Molecular Biology (RECOMB '05), pp. 217232, 2005.
[5] D. Huson and T. Klöpper, “Beyond Galled Trees  Decomposition and Computation of Galled Networks,” Proc. the 11th Ann. Int'l Conf. Research in Computational Molecular Biology (RECOMB '07), pp. 211225, 2007.
[6] G. Jin, L. Nakhleh, S. Snir, and T. Tuller, “Molecular Phylogeny and Evolution of Primate Mitochondrial DNA,” Molecular Biology and Evolution, vol. 24, no. 1, pp. 324337, 2007.
[7] L. Nakhleh, G. Jin, F. Zhao, and J. MellorCrummey, “Reconstructing Phylogenetic Networks Using Maximum Parsimony,” Proc. IEEE Computational Systems Bioinformatics Conf., pp. 93102, 2005.
[8] J.D. Velasco and E. Sober, “Testing for Treeness: Lateral Gene Transfer, Phylogenetic Inference, and Model Selection,” Biology and Philosophy, vol. 25, pp. 675687, 2010.
[9] L. Wang, K. Zhang, and L. Zhang, “Perfect Phylogenetic Networks with Recombination,” J. Computational Biology, vol. 8, pp. 6978, 2001.
[10] M. Bordewich and C. Semple, “Computing the Minimum Number of Hybridisation Events for a Consistent Evolutionary History,” Discrete Applied Math., vol. 155, no. 8, pp. 914928, 2007.
[11] H. Bandelt and A. Dress, “A Canonical Decomposition Theory for Metrics on a Finite Set,” Advances in Math., vol. 92, pp. 47105, 1992.
[12] H.J. Bandelt and A.W.M. Dress, “Split Decomposition: A New and Useful Approach to Phylogenetic Analysis of Distance Data,” Molecular Phylogenetics and Evolution, vol. 1, pp. 242252, 1992.
[13] D. Bryant and V. Moulton, “Neighbornet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks,” Molecular Biology and Evolution, vol. 21, no. 2, pp. 255265, 2004.
[14] H. Bandelt, P. Forster, B. Sykes, and M. Richards, “Mitochondrial Portraits of Human Populations Using Median Networks,” Genetics, vol. 141, no. 2, pp. 743753, 1995.
[15] A. Dress and D. Huson, “Constructing Splits Graphs,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 1, no. 3, pp. 109115, JulySept. 2004.
[16] D.H. Huson and D. Bryant, “Application of Phylogenetic Networks in Evolutionary Studies,” Molecular Biology and Evolution, vol. 23, no. 2, pp. 254267, 2006.
[17] L. Bao and S. Bereg, “Counting Faces in Split Networks,” Proc. Fifth Int'l Symp. Bioinformatics Research and Applications (ISBRA), pp. 112123, 2009.
[18] P. Buneman, “The Recovery of Trees from Measures of Dissimlarity,” Mathematics in the Archeological and Historical Sciences, pp. 387395, Univ. Press, 1971.
[19] S.V. Chmutov, S.V. Duzhin, and S.K. Lando, “Vassiliev Knot Invariants ii,” Advances in Soviet Math., vol. 21, pp. 127134, 1994.
[20] T. Kashiwabara, S. Masuda, K. Nakajima, and T. Fujisawa, “Polynomial Time Algorithms on CircularArc Overlap Graphs,” Networks, vol. 21, pp. 195203, 1991.
[21] D. Gusfield, “Efficient Algorithms for Inferring Evolutionary Trees,” Networks, vol. 21, no. 1, pp. 1928, 1991.
[22] P.J. Lockhart, M.A. Steel, M.D. Hendy, and D. Penny, “Recovering Evolutionary Trees under a More Realistic Model of Sequence Evolution,” Molecular Biology and Evolution, vol. 11, pp. 605612, 1994.
[23] K. Hayasaka, T. Gojobori, and S. Horai, “Molecular Phylogeny and Evolution of Primate Mitochondrial Dna,” Molecular Biology and Evolution, vol. 5, pp. 626644, 1988.