
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Lingyu Ma, M. Reisert, H. Burkhardt, "RENNSH: A Novel \alphaHelix Identification Approach for Intermediate Resolution Electron Density Maps," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 1, pp. 228239, January/February, 2012.  
BibTex  x  
@article{ 10.1109/TCBB.2011.52, author = { Lingyu Ma and M. Reisert and H. Burkhardt}, title = {RENNSH: A Novel \alphaHelix Identification Approach for Intermediate Resolution Electron Density Maps}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {9}, number = {1}, issn = {15455963}, year = {2012}, pages = {228239}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2011.52}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  RENNSH: A Novel \alphaHelix Identification Approach for Intermediate Resolution Electron Density Maps IS  1 SN  15455963 SP228 EP239 EPD  228239 A1  Lingyu Ma, A1  M. Reisert, A1  H. Burkhardt, PY  2012 KW  statistical analysis KW  biology computing KW  learning (artificial intelligence) KW  macromolecules KW  molecular biophysics KW  molecular configurations KW  noise KW  proteins KW  noise KW  αhelix identification approach KW  intermediate resolution electron density maps KW  protein secondary structure KW  biological macromolecules KW  machine learning problem KW  spherical harmonic descriptors KW  RENNSH KW  energy function KW  statistical analysis KW  Training KW  Proteins KW  Labeling KW  Principal component analysis KW  Harmonic analysis KW  Bioinformatics KW  Query processing KW  refined classification. KW  Structural bioinformatics KW  secondary structure identification KW  intermediate resolution electron density maps KW  spherical harmonic descriptors VL  9 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] S. Dutta and H.M. Berman, “Large Macromolecular Complexes in the Protein Data Bank: A Status Report,” Structure, vol. 13, no. 3, pp. 381388, 2005.
[2] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne, “The Protein Data Bank,” Nucleic Acids Research, vol. 28, pp. 235242, 2000.
[3] M. Woolfson, An Introduction to Xray Crystallography. Cambridge Univ. Press, Jan. 1997.
[4] A.E. Ferentz and G. Wagner, “Nmr Spectroscopy: A Multifaceted Approach to Macromolecular Structure,” Quarterly Rev. of Biophysics, vol. 33, no. 1, pp. 2965, 2000.
[5] M. van Heel, B. Gowen, R. Matadeen, E.V. Orlova, R. Finn, T. Pape, D. Cohen, H. Stark, R. Schmidt, M. Schatz, and A. Patwardhan, “SingleParticle Electron CryoMicroscopy: Towards Atomic Resolution,” Quarterly Rev. of Biophysics, vol. 33, no. 4, pp. 307369, 2000.
[6] C. Bajaj, “Automatic Structure Interpretation of Single Particle CryoElectron Microscopy: From Images to PsuedoAtomic Models,” Proc. IEEE Fourth Int'l Symp. Biomedical Imaging (ISBI '07): From Nano to Macro, pp. 236239, Apr. 2007.
[7] W. Jiang, M.L. Baker, S.J. Ludtke, and W. Chiu, “Bridging the Information Gap: Computational Tools for Intermediate Resolution Structure Interpretation,” J. Molecular Biology, vol. 308, no. 5, pp. 10331044, 2001.
[8] K. Lasker, O. Dror, M. Shatsky, R. Nussinov, and H. Wolfson, “Ematch: Discovery of High Resolution Structural Homologues of Protein Domains in Intermediate Resolution CryoEm Maps,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, no. 1, pp. 2839, Jan.Mar. 2007.
[9] A.D. Palu, H.J., P.E., and L.Y., “Identification of AlphaHelices from Low Resolution Protein Density Maps,” Proc. Computational Systems Bioinformatics Conf., pp. 8998, 2006.
[10] M.L. Baker, T. Ju, and W. Chiu, “Identification of Secondary Structure Elements in IntermediateResolution Density Maps,” Structure, vol. 15, no. 1, pp. 719, 2007.
[11] T. Ju, M.L. Baker, and W. Chiu, “Computing a Family of Skeletons of Volumetric Models for Shape Description,” Computer Aided Design, vol. 39, no. 5, pp. 352360, 2007.
[12] Z. Yu and C.L. Bajaj, “Computational Approaches for Automatic Structural Analysis of Large Biomolecular Complexes,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 5, no. 4, pp. 568582, Oct.Dec. 2008.
[13] Z. Yu and C. Bajaj, “Automatic Ultrastructure Segmentation of Reconstructed Cryoem Maps of Icosahedral Viruses,” IEEE Trans. Image Processing, vol. 14, no. 9, pp. 13241337, Sept. 2005.
[14] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors,” 2003.
[15] R. Schapire, “The Boosting Approach to Machine Learning: An Overview,” 2001.
[16] A. Zoubir and B. Boashash, “The Bootstrap and its Application in Signal Processing,” IEEE Signal Processing Magazine, vol. 15, no. 1, pp. 5676, Jan. 1998.
[17] G. Riccardi and D. HakkaniTur, “Active Learning: Theory and Applications to Automatic Speech Recognition,” IEEE Trans. Speech and Audio Processing, vol. 13, no. 4, pp. 504511, July 2005.
[18] M. Reisert, “Group Integration Techniques in Pattern Analysis—A Kernel View,” PhD dissertation, AlbertLudwigsUniv., Aug. 2008.
[19] H. Skibbe, M. Reisert, Q. Wang, O. Ronneberger, and H. Burkhardt, “Fast Computation of 3D Spherical Fourier Harmonic Descriptors—A Complete Orthonormal Basis for a Rotational Invariant Representation of ThreeDimensional Objects,” Proc. IEEE 12th Int'l Conf. Computer Vision3 (ICCV '09), 2009.
[20] S.J. Ludtke, P.R. Baldwin, and W. Chiu, “Eman: Semiautomated Software for HighResolution SingleParticle Reconstructions,” J. Structural Biology, vol. 128, no. 1, pp. 8297, 1999.
[21] J.A. Christopher, R. Swanson, and T.O. Baldwin, “Algorithms for Finding the Axis of a Helix: Fast Rotational and Parametric LeastSquares Methods,” Computers and Chemistry, vol. 20, no. 3, pp. 339345, 1996.
[22] P.C. Kahn, “Defining the Axis of a Helix,” Computers and Chemistry, vol. 13, no. 3, pp. 185189, 1989.
[23] S. Griep and U. Hobohm, “Pdbselect 19922009 and PdbfilterSelect,” Nucleic Acids Research, vol. 38, pp. 318319, 2010.
[24] D.H. Jr D. Rockmore, P. Kostelec, and S. Moore, “Ffts for the 2Sphere—Improvements and Variations,” J. Fourier Analysis and Applications, vol. 9, no. 4, pp. 341385, July 2003.
[25] R.F. Sproull, “Refinements to NearestNeighbor Searching in KDimensional Trees,” Algorithmica, vol. 6, no. 4, pp. 579589, 1991.
[26] T. Liu, A.W. Moore, and A. Gray, “New Algorithms for Efficient HighDimensional Nonparametric Classification,” J. Machine Learning Research, vol. 7, pp. 11351158, Dec. 2006.
[27] S.Z. Li, K.L. Chan, and C. Wang, “Performance Evaluation of the Nearest Feature Line Method in Image Classification and Retrieval,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 13351339, Nov. 2000.
[28] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k Nearest Neighbor Search Using GPU,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition (CVPR) Workshops, June 2008.
[29] Y.A. Wang, X. Yu, S. Overman, M. Tsuboi, G.J. Thomas, Jr, and E.H. Egelman, “The Structure of a Filamentous Bacteriophage,” J. Molecular Biology, vol. 361, no. 2, pp. 209215, 2006.
[30] E.C. Settembre, J.Z. Chen, P.R. Dormitzer, N. Grigorieff, and S.C. Harrison, “Atomic Model of an Infectious Rotavirus Particle,” The EMBO J., vol. 30, pp. 408416, Nov. 2010.
[31] J. Rabl, D.M. Smith, Y. Yu, S.C. Chang, A.L. Goldberg, and Y. Cheng, “Mechanism of Gate Opening in the 20s Proteasome by the Proteasomal Atpases,” Molecular Cell, vol. 30, no. 3, pp. 360368, 2008.