
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
D. Bogdanowicz, K. Giaro, "Matching Split Distance for Unrooted Binary Phylogenetic Trees," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 1, pp. 150160, January/February, 2012.  
BibTex  x  
@article{ 10.1109/TCBB.2011.48, author = {D. Bogdanowicz and K. Giaro}, title = {Matching Split Distance for Unrooted Binary Phylogenetic Trees}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {9}, number = {1}, issn = {15455963}, year = {2012}, pages = {150160}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2011.48}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Matching Split Distance for Unrooted Binary Phylogenetic Trees IS  1 SN  15455963 SP150 EP160 EPD  150160 A1  D. Bogdanowicz, A1  K. Giaro, PY  2012 KW  trees (mathematics) KW  evolution (biological) KW  genetics KW  evolutionary tree reconstruction KW  matching split distance KW  unrooted binary phylogenetic trees KW  Measurement KW  Phylogeny KW  Bipartite graph KW  Artificial neural networks KW  Radio frequency KW  Bioinformatics KW  Computational biology KW  matching split distance. KW  Phylogenetic tree KW  phylogenetic tree metric KW  phylogenetic tree comparison KW  splits KW  minimumweight perfect matching VL  9 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] B.L. Allen and M. Steel, “Subtree Transfer Operations and Their Induced Metrics on Evolutionary Trees,” Annals of Combinatorics, vol. 5, pp. 115, 2001.
[2] J. Bluis and D.G. Shin, “Nodal Distance Algorithm: Calculating a Phylogenetic Tree Comparison Metric,” Proc. Third IEEE Symp. BioInformatics and BioEng., pp. 8794, 2003.
[3] D. Bogdanowicz, “Analyzing Sets of Phylogenetic Trees Using Metrics,” Applicationes Mathematicae, vol. 38, no. 1, pp. 116, 2011.
[4] D. Bryant, “The Splits in the Neighborhood Tree,” Annals of Combinatorics, vol. 8, pp. 111, 2004.
[5] D. Bryant, “Building Trees, Hunting for Trees, and Comparing Trees Theory and Methods in Phylogenetic Analysis,” PhD thesis, Dept. of Math., Univ. of Canterbury, 1997.
[6] B. Dasgupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang, “On Distances between Phylogenetic Trees,” Proc. Eighth Ann. ACMSIAM Symp. Discrete Algorithms (SODA), pp. 427436, 1997.
[7] G.F. Estabrook, F.R. McMorris, and C.A. Meacham, “Comparison of Undirected Phylogenetic Trees Based on Subtrees of 4 Evolutionary Units,” Systematic Biology, vol. 34, pp. 193200, 1985.
[8] J. Felsenstein, Inferring Phylogenies. Sinauer Assoc. 2003.
[9] H.N. Gabow and R.E. Tarjan, “Faster Scaling Algorithms for Network Problems,” SIAM J. Computing, vol. 18, pp. 10131036, 1989.
[10] D. Gusfield, “Efficient Algorithms for Inferring Evolutionary Trees,” Networks, vol. 21, pp. 1928, 1991.
[11] G. Hickey, F. Dehne, A. RauChaplin, and C. Blouin, “SPR Distance Computation for Unrooted Trees,” Evolutionary Bioinformatics, vol. 4, pp. 1727, 2008.
[12] D.M. Hillis, T.A. Heath, and K.S. John, “Analysis and Visualization of Tree Space,” Systematic Biology, vol. 54, no. 3, pp. 471482, 2005.
[13] M. Li, J. Tromp, and L. Zhang, “On the Nearest Neighbour Interchange Distance between Evolutionary Trees,” J. Theoretical Biology, vol. 182, no. 4, pp. 463467, 1996.
[14] A. McKenzie and M. Steel, “Distributions of Cherries for Two Models of Trees,” Math. Biosciences, vol. 164, no. 1, pp. 8192, 2000.
[15] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou, “TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context with Guaranteed Visibility,” ACM Trans. Graphics, vol. 22, no. 3, pp. 453462, 2003.
[16] J.B. Orlin and R.K. Ahuja, “New Scaling Algorithms for the Assignment and Minimum Mean Cycle Problems,” Math. Programming, vol. 54, pp. 4156, 1992.
[17] D.F. Robinson and L.R. Foulds, “Comparison of Phylogenetic Trees,” Math. Biosciences, vol. 53, pp. 131147, 1981.
[18] C. Semple and M. Steel, Phylogenetics. Oxford Univ. Press, 2003.
[19] M.A. Steel and D. Penny, “Distributions of Tree Comparison Metrics  Some New Results,” Systematic Biology, vol. 42, no. 2, pp. 126141, 1993.
[20] C. Stockham, L.S. Wang, and T. Warnow, “Statistically Based Postprocessing of Phylogenetic Analysis by Clustering,” Bioinformatics, vol. 18, no. suppl. 1, pp. S285S293, 2002.
[21] D.M. de Vienne, T. Giraud, and O.C. Martin, “A Congruence Index for Testing Topological Similarity between Trees,” Bioinformatics, vol. 23, pp. 31193124, 2007.
[22] J.T.L. Wang, H. Shan, D. Shasha, and W.H. Piel, “Fast Structural Search in Phylogenetic Databases,” Evolutionary Bioinformatics, vol. 1, pp. 3746, 2005.