The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January/February (2012 vol.9)
pp: 88-97
J. R. Quevedo , Dept. de Inf., Univ. de Oviedo en Gijon, Gijon, Spain
A. Bahamonde , Centro de Intel. Artificial, Univ. de Oviedo en Gijon, Gijon, Spain
M. Perez-Enciso , Dept. de Cienc. Animal i dels Aliments, Univ. Autonoma de Barcelona, Bellaterra, Spain
O. Luaces , Centro de Intel. Artificial, Univ. de Oviedo en Gijon, Gijon, Spain
ABSTRACT
Genome-wide association studies (GWA) try to identify the genetic polymorphisms associated with variation in phenotypes. However, the most significant genetic variants may have a small predictive power to forecast the future development of common diseases. We study the prediction of the risk of developing a disease given genome-wide genotypic data using classifiers with a reject option, which only make a prediction when they are sufficiently certain, but in doubtful situations may reject making a classification. To test the reliability of our proposal, we used the Wellcome Trust Case Control Consortium (WTCCC) data set, comprising 14,000 cases of seven common human diseases and 3,000 shared controls.
INDEX TERMS
Diseases, Bioinformatics, Diabetes, Biological cells, Input variables, Genomics,risk of common human diseases., Genome-wide analysis, classification with a reject option
CITATION
J. R. Quevedo, A. Bahamonde, M. Perez-Enciso, O. Luaces, "Disease Liability Prediction from Large Scale Genotyping Data Using Classifiers with a Reject Option", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.9, no. 1, pp. 88-97, January/February 2012, doi:10.1109/TCBB.2011.44
REFERENCES
[1] D. De los Campos, D. Gianola, and D.B. Allison, “Predicting Genetic Predisposition in Humans: The Promise of Whole-Genome Markers,” Nature Reviews Genetics, vol. 11, pp. 880-886, 2010.
50 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool