The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - September/October (2011 vol.8)
pp: 1425-1430
Paolo Magni , Università degli Studi di Pavia, Pavia
Angela Simeone , (BIOTEC), Technische Universität Dresden
Sandra Healy , National University of Ireland, Galway
Antonella Isacchi , Nerviano Medical Sciences, Nerviano
Roberta Bosotti , Nerviano Medical Sciences, Nerviano
ABSTRACT
Microarray experiments are affected by several sources of variability. The paper demonstrates the major role of the day-to-day variability, it underlines the importance of a randomized block design when processing replicates over several days to avoid systematic biases and it proposes a simple algorithm that minimizes the day dependence.
INDEX TERMS
Gene expression, statistical analysis, Affymetrix microarray, experimental variability.
CITATION
Paolo Magni, Angela Simeone, Sandra Healy, Antonella Isacchi, Roberta Bosotti, "Summarizing Probe Intensities of Affymetrix GeneChip 3' Expression Arrays Taking into Account Day-to-Day Variability", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.8, no. 5, pp. 1425-1430, September/October 2011, doi:10.1109/TCBB.2010.82
REFERENCES
[1] L. Gautier, L. Cope, B. Bolstad, and R. Irizarry, “Affy-Analysis of Affymetrix Genechip Data at the Probe Level,” Bioinformatics, vol. 20, pp. 307-315, 2004.
[2] R. Irizarry, B. Hobbs, F. Collin, Y. Beazer-Barclay, K. Antonellis, U. Scherf, and T. Speed, “Exploration, Normalization and Summaries of High Density Oligonucleotide Array Probe Level Data,” Biostatistics, vol. 4, pp. 249-264, 2003.
[3] Affymetrix, GeneChip Expression Analysis Technical Manual, Affymetrix, Inc., 2004.
[4] R. Hoffmann, T. Seidl, and M. Dugas, “Profound Effect of Normalization of Detection of Differentially Expressed Genes in Oligonucleotide Microarray Data Analysis,” Genome Biology, vol. 3, pp. 1-11, 2002.
[5] J.J. Chen, R.R. Delongchamp, C. Tsai, H. Hsueh, F. Sistare, K.L. Thompson, V.J. Desai, and J.C. Fuscoe, “Analysis of Variance Components in Gene Expression Data,” Bioinformatics, vol. 20, pp. 1436-1446, 2004.
[6] R.A. Irizarry, D. Warren, F. Spencer, I.F. Kim, S. Biswal, B.C. Frank, E. Gabrielson, J.G.N. Garcia, J. Geoghegan, G. Germino, C. Griffin, S.C. Hilmer, E. Hoffman, A.E. Jedlicka, E. Kawasaki, F. Martinez-Murillo, L. Morsberger, H. Lee, D. Petersen, J. Quackenbush, A. Scott, M. Wilson, Y. Yang, S.Q. Ye, and W. Yu, “Multiple-Laboratory Comparison of Microarrays Platforms,” Nature Methods, vol. 2, pp. 1-5, 2005.
[7] R.A. Ach, A. Floore, B. Curry, V. Lazar, A.M. Glas, R. Pover, A. Tsalenko, H. Ripoche, F. Cardoso, M.S. d'Assignies, L. Bruhn, and L. Van't Veer, “Robust Interlaboratory Reproducibility of a Gene Expression Signature Measurement Consistent with the Needs of a New Generation of Diagnostic Tools,” BMC Genomics, vol. 8, article no. 148, 2007.
[8] W. Johnson, C. Li, and A. Rabinovic, “Adjusting Batch Effects in Microarray Expression Data Using Empirical Bayes Methods,” Biostatistics, vol. 8, pp. 118-127, 2007.
[9] J. Leek and J. Storey, “Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis,” PLoS Genetics, vol. 3, no. 9:e161, 2007.
[10] A.H. Sims, G.J. Smethurst, Y. Het, M.J. Okoniewski, S.D. Pepper, A. Howell, C.J. Miller, and R.B. Clarke, “The Removal of Multiplicative, Systematic Bias Allows Integration of Breast Cancer Gene Expression Datasets Improving Meta-Analysis and Prediction of Prognosis,” BMC Med Genomics, vol. 1, article no. 42, 2008.
[11] W.L. Walker, I.H. Liao, D.L. Gilbert, B. Wong, K.S. Pollard, C.E. McCulloch, L. Lit, and F.R. Sharp, “Empirical Bayes Accomodation of Batch-Effects in Microarray Data Using Identical Replicate Reference Samples: Application to RNA Expression Profiling of Blood from Duchenne Muscular Dystrophy Patients,” BMC Genomics, vol. 9, article no. 494, 2008.
[12] H. Yang, C.A. Harrington, K. Vartanian, C.D. Coldern, R. Hall, and G.A. Churchill, “Randomization in Laboratory Procedure Is Key to Obtaining Reproducible Microarray Results,” PloS ONE, vol. 3, p. e3724, 2008.
[13] E. Hubbell, W. Liu, and R. Mei, “Robust Estimators for Expression Analysis,” Bioinformatics, vol. 18, pp. 1585-1592, 2002.
[14] W. Liu, R. Mei, X. Di, T.B. Ryder, E. Hubbell, S. Dee, T. Webster, C.A. Harrington, M. Ho, J. Baid, and S. Smeekens, “Analysis of High Density Expression Microarrays with Signed-Rank Call Algorithms,” Bioinformatics, vol. 18, pp. 1593-1599, 2002.
[15] C. Li and W. Wong, “Model-Based Analysis of Oligonucleotide Arrays: Model Validation, Design Issues and Standard Error Application,” Genome Biology, vol. 2, pp. 1-11, 2001.
[16] R.A. Irizarry, B.M. Bolstad, F. Collin, L.M. Cope, B. Hobbs, and T.P. Speed, “Summaries of Affymetrix GeneChip Probe Level Data,” Nucleic Acid Research, vol. 31, pp. 1-8, 2003.
[17] F. Naef, N. Socci, and M. Magnasc, “A Study of Accuracy and Precision in Oligonucleotide Arrays: Extracting More Signal at Large Concentrations,” Bioinformatics, vol. 19, pp. 178-184, 2003.
[18] B. Bolstad, F. Collin, J. Brettschneider, K. Simpson, L. Cope, R.A. Irizarry, and T. Speed, “Quality Assessment of Affymetrix GeneChip Data,” Bioinformatics and Computationl Biology Solutions Using R and Bioconductor, R. Gentelman, V. Carey, W. Huber, R.A. Irizarry, and S. Dudoit, eds., Springer, 2005.
[19] S. Katz, A. Rafael, A. Irizarry, X. Lin, M. Tripputi, and M.W. Porter, “A Summarization Approach for Affymetrix GeneChip Data Using a Reference Set from a Large, Biologically Diverse Database,” BMC Bioinformatics, vol. 7, article no. 464, 2006.
[20] Affymetrix, Guide to Probe Logarithmic Intensity Error (PLIER) Estimation, Affymetrix, Inc., 2007.
[21] Z. Wu, R.A. Irizarry, R. Gentleman, F. Martinez-Murillo, and F. Spencer, “A Model-Based Background Adjustment for Oligonucleotide Expression Arrays,” J. Am. Statistical Assoc., vol. 99, pp. 909-918, 2004.
[22] R. Gentelman, V. Carey, D. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, A. Maechler, A. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Yang, and J. Zhang, “Bioconductor: Open Software Development for Computational Biology and Bioinformatics,” Genome Biology, vol. 5, p. R80, 2004.
[23] P. Magni, F. Ferrazzi, L. Sacchi, and R. Bellazzi, “TimeClust: A Clustering Tool for Gene Expression Time Series,” Bioinformatics, vol. 24, pp. 430-432, 2008.
31 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool