This Article 
 Bibliographic References 
 Add to: 
On the Distribution of the Number of Cycles in the Breakpoint Graph of a Random Signed Permutation
September/October 2011 (vol. 8 no. 5)
pp. 1411-1416
Simona Grusea, Université de Toulouse, Toulouse
We use the finite Markov chain embedding technique to obtain the distribution of the number of cycles in the breakpoint graph of a random uniform signed permutation. This further gives a very good approximation of the distribution of the reversal distance between two random genomes.

[1] D.A. Bader, B.M.E. Moret, and M. Yan, “A Linear-Time Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study,” J. Computational Biology, vol. 8, no. 5, pp. 483-491, Oct. 2001.
[2] V. Bafna and P. Pevzner, “Genome Rearrangements and Sorting by Reversals,” SIAM J. Computing, vol. 25, no. 2, pp. 272-289, Feb. 1996, doi:10.1137/S0097539793250627.
[3] A. Bergeron, C. Chauve, and Y. Gingras, “Formal Models of Gene Clusters,” Bioinformatics Algorithms: Techniques and Applications, I. Mandoiu and A. Zelikovsky, eds., Wiley Series of Bioinformatics, 2008.
[4] A. Bergeron, S. Corteel, and M. Raffinot, “The Algorithmic of Gene Teams,” Proc. Int'l Workshop Algorithms in Bioinformatics, pp. 464-476, Jan. 2002, doi:10.1007/3-540-45784-4_36.
[5] A. Bergeron, J. Mixtacki, and J. Stoye, “A Unifying View of Genome Rearrangements,” Proc. Int'l Workshop Algorithms in Bioinformatics, vol. 4175, pp. 163-173, Sept. 2006, doi:10.1007/11851561_16.
[6] G. Blin and J. Stoye, “Finding Nested Common Intervals Efficiently,” Proc. Int'l Workshop Comparative Genomics, pp. 59-69, Sept. 2009, doi:10.1007/978-3-642-04744-2_6.
[7] S. Bocker, K. Jahn, J. Mixtacki, and J. Stoye, “Computation of Median Gene Clusters,” J. Computational Biology, vol. 16, no. 8, pp. 1085-1099, Aug. 2009, doi:10.1089/cmb.2009.0098.
[8] M. Bona and R. Flynn, “The Average Number of Block Interchanges Needed to Sort a Permutation and a Recent Result of Stanley,” Information Processing Letters, vol. 109, no. 16, pp. 927-931, July 2009, doi:10.1016/j.ipl.2009.04.019.
[9] A. Caprara, “On the Tightness of the Alternating-Cycle Lower Bound for Sorting by Reversals,” J. Combinatorial Optimization, vol. 3, nos. 2/3, pp. 149-182, July 1999, doi:10.1023/A:1009838309166.
[10] V. Choi, C. Zheng, Q. Zhu, and D. Sankoff, “Algorithms for the Extraction of Synteny Blocks from Comparative Maps,” Proc. Int'l Workshop Algorithms in Bioinformatics, pp. 277-288, Aug. 2007, doi:10.1007/978-3-540-74126-8_26.
[11] D.A. Christie, “Sorting Permutations by Block-Interchanges,” Information Processing Letters, vol. 60, no. 4, pp. 165-169, Nov. 1996, doi:10.1016/S0020-0190(96)00155-X.
[12] S. Corteel, G. Louchard, and R. Pemantle, “Common Intervals in Permutations,” Discrete Math. and Theoretical Computer Science, vol. 8, no. 1, pp. 189-216, 2006.
[13] E. Danchin and P. Pontarotti, “Statistical Evidence for a More than 800-Million-Year-Old Evolutionarily Conserved Genomic Region in Our Genome,” J. Molecular Evolution, vol. 59, no. 5, pp. 587-597, Nov. 2004.
[14] J-P. Doignon and A. Labarre, “On Hultman Numbers,” J. Integer Sequences, vol. 10, article no. 07.6.2, 2007.
[15] D. Durand and D. Sankoff, “Tests for Gene Clustering,” J. Computational Biology, vol. 10, nos. 3/4, pp. 453-482, June 2003, doi:10.1089/10665270360688129.
[16] J.C. Fu and M.V. Koutras, “Distribution Theory of Runs: A Markov Chain Approach,” J. Am. Statistical Assoc., vol. 89, no. 427, pp. 1050-1058, Sept. 1994.
[17] S. Grusea, “Measures for the Exceptionality of Gene Order in Conserved Genomic Regions,” Advances in Applied Math., vol. 45, no. 3, pp. 359-372, Sept. 2010, doi:10.1016/j.aam.2010.02.002.
[18] S. Hannenhalli and P. Pevzner, “Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals,” J. ACM, vol. 46, no. 1, pp. 1-27, Jan. 1999.
[19] R. Hoberman and D. Durand, “The Incompatible Desiderata of Gene Cluster Properties,” Proc. Int'l Workshop Comparative Genomics, pp. 73-87, Sept. 2005, doi:10.1007/11554714.
[20] R. Hoberman, D. Sankoff, and D. Durand, “The Statistical Analysis of Spatially Clustered Genes under the Maximum Gap Criterion,” J. Computational Biology, vol. 12, no. 8, pp. 1083-1102, Oct. 2005, doi:10.1089/cmb.2005.12.1083.
[21] J. Kececioglu and D. Sankoff, “Exact and Approximation Algorithms for Sorting by Reversals, with Application to Genome Rearrangement,” Algorithmica, vol. 13, nos. 1/2, pp. 180-210, Feb. 1995, doi:10.1007/BF01188586.
[22] Z. Li, L. Wang, and K. Zhang, “Algorithmic Approaches for Genome Rearrangement: A Review,” IEEE Trans. Systems, Man and Cybernetics, Part C, vol. 36, no. 5, pp. 636-648, Sept. 2006.
[23] J. Nadeau and B. Taylor, “Lengths of Chromosomal Segments Conserved since Divergence of Man and Mouse,” Proc. Nat'l Academy of Sciences USA, vol. 81, pp. 814-818, 1984.
[24] P. Pevzner and G. Tesler, “Genome Rearrangements in Mammalian Evolution: Lessons from Human and Mouse Genomes,” Genome Research, vol. 13, no. 1, pp. 37-45, Jan. 2003.
[25] N. Raghupathy and D. Durand, “Gene Cluster Statistics with Gene Families,” Molecular Biology and Evolution, vol. 26, no. 5, pp. 957-968, Jan. 2009, doi:10.1093/molbev/msp002.
[26] D. Sankoff and L. Haque, “Power Boosts for Cluster Tests,” Proc. Int'l Workshop Comparative Genomics, pp. 121-130, Dec. 2005, doi:10.1007/11554714_11.
[27] D. Sankoff and L. Haque, “The Distribution of Genomic Distance between Random Genomes,” J. Computational Biology, vol. 13, no. 5, pp. 1005-1012, June 2006, doi:10.1089/cmb.2006.13.1005.
[28] K.M. Swenson, Y. Lin, V. Rajan, and B.M.E. Moret, “Hurdles Hardly Have to Be Heeded,” Proc. Int'l Workshop Comparative Genomics (RECOMB-CG '08), pp. 239-249, 2008, doi:10.1007/978-3-540-87989-3_18.
[29] K.M. Swenson, V. Rajan, Y. Lin, and B.M.E. Moret, “Sorting Signed Permutations by Inversions in ${\cal O}(n \log n)$ Time,” Proc. Ann. Int'l Conf. Research in Computational Molecular Biology, pp. 386-399, May 2009, doi:10.1007/978-3-642-02008-7_28.
[30] E. Tannier, A. Bergeron, and M-F. Sagot, “Advances on Sorting by Reversals,” Discrete Applied Math., vol. 155, nos. 6/7, pp. 881-888, Apr. 2007, doi:10.1016/j.dam.2005.02.033.
[31] W. Xu, “The Distance between Randomly Constructed Genomes,” Proc. Fifth Asia-Pacific Bioinformatics Conf., pp. 227-236, Oct. 2006, doi:10.1142/9781860947995_0025.
[32] W. Xu, C. Zheng, and D. Sankoff, “Paths and Cycles in Breakpoint Graph of Random Multichromosomal Genomes,” J. Computational Biology, vol. 14, no. 4, pp. 423-435, May 2007, doi:10.1089/cmb.2007.A004.
[33] S. Yancopoulos, O. Attie, and R. Friedberg, “Efficient Sorting of Genomic Permutations by Translocation, Inversion and Block Interchange,” Bioinformatics, vol. 21, no. 16, pp. 3340-3346, Aug. 2005, doi:10.1093/bioinformatics/bti535.
[34] Q. Zhu, Z. Adam, V. Choi, and D. Sankoff, “Generalized Gene Adjacencies, Graph Bandwidth, and Clusters in Yeast Evolution,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 6, no. 2, pp. 213-220, Apr.-June 2009.

Index Terms:
Markov processes, probabilistic algorithms, distribution functions, biology and genetics.
Simona Grusea, "On the Distribution of the Number of Cycles in the Breakpoint Graph of a Random Signed Permutation," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 5, pp. 1411-1416, Sept.-Oct. 2011, doi:10.1109/TCBB.2010.123
Usage of this product signifies your acceptance of the Terms of Use.