
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Simone Battagliero, Giuseppe Puglia, Saverio Vicario, Francesco Rubino, Gaetano Scioscia, Pietro Leo, "An Efficient Algorithm for Approximating Geodesic Distances in Tree Space," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 5, pp. 11961207, September/October, 2011.  
BibTex  x  
@article{ 10.1109/TCBB.2010.121, author = {Simone Battagliero and Giuseppe Puglia and Saverio Vicario and Francesco Rubino and Gaetano Scioscia and Pietro Leo}, title = {An Efficient Algorithm for Approximating Geodesic Distances in Tree Space}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {8}, number = {5}, issn = {15455963}, year = {2011}, pages = {11961207}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2010.121}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  An Efficient Algorithm for Approximating Geodesic Distances in Tree Space IS  5 SN  15455963 SP1196 EP1207 EPD  11961207 A1  Simone Battagliero, A1  Giuseppe Puglia, A1  Saverio Vicario, A1  Francesco Rubino, A1  Gaetano Scioscia, A1  Pietro Leo, PY  2011 KW  Analysis of algorithms KW  phylogeny KW  tree distance KW  geodesic KW  discrete mathematics. VL  8 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] N. Amenta, M. Godwin, N. Postarnakevich, and K.S. John, “Approximating Geodesic Tree Distance,” Information Processing Letters, vol. 103, pp. 6165, 2007.
[2] C. Berge, Graphs and Hypergraphs. Elsevier Science Ltd., 1985.
[3] L. Billera, S. Holmes, and K. Vogtmann, “Geometry of the Space of Phylogenetic Trees,” Advances in Applied Math., vol. 27, pp. 733767, 2001.
[4] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.
[5] M.P. Cummings, S.A. Handley, D.S. Myers, D.L. Reed, A. Rokas, and K. Winka, “Comparing Bootstrap and Posterior Probability Values in the FourTaxon Case,” Systematic Biology, vol. 52, pp. 477487, 2003.
[6] A.J. Drummond and A. Rambaut, “BEAST: Bayesian Evolutionary Analysis by Sampling Trees,” BMC Evolutionary Biology, vol. 7, article no. 214, 2007.
[7] A.J. Drummond and K. Strimmer, “PAL: An ObjectOriented Programming Library for Molecular Evolution and Phylogenetics,” Bioinformatics, vol. 17, pp. 662663, http://www.cebl. auckland.ac.nzpalproject /, 2001.
[8] S.V. Edwards, “Is a New and General Theory of Molecular Systematics Emerging?,” Evolution, vol. 63, pp. 119, 2009.
[9] J. Felsenstein, Inferring Phylogenies. Sinauer Associates, 2004.
[10] W. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain Monte Carlo in Practice. Chapman & Hall, 1996.
[11] N. Goldman, J.P. Anderson, and A.G. Rodrigo, “LikelihoodBased Tests of Topologies in Phylogenetics,” Systematic Biology, vol. 49, pp. 652670, 2000.
[12] E.F. Harding, “The Probabilities of Rooted TreeShapes Generated by Random Bifurcation,” Advances in Applied Probability, vol. 3, pp. 4477, 1971.
[13] M. Holder and P.O. Lewis, “Phylogeny Estimation: Traditional and Bayesian Approaches,” Nature Rev. Genetics, vol. 43, pp. 275284, 2003.
[14] P. Huggins, M. Owen, and R. Yoshida, “First Steps toward the Geometry of Cophylogeny,” arXiv:0809.1908v3.
[15] D.H. Janzen, M. Hajibabaei, J.M. Burns, W. Hallwachs, E. Remigio, and P.D.N. Hebert, “Wedding Biodiversity Inventory of a Large and Complex Lepidoptera Fauna with DNA Barcoding,” Philosophical Trans. Royal Soc. B, vol. 360, pp. 18351845, 2005.
[16] A. Kupczok, A. von Haeseler, and S. Klaere, “An Exact Algorithm for the Geodesic Distance between Phylogenetic Trees,” J. Computational Biology, vol. 15, pp. 577591, 2008.
[17] Mesquite: A Modular System for Evolutionary Analysis, http://mesquiteproject.org/mesquitemesquite.html , 2011.
[18] MrBayes: Bayesian Inference of Phylogeny, http:/mrbayes.csit. fsu.edu, 2011.
[19] K. Munch, W. Boomsma, E. Willerslev, and R. Nielsen, “Fast Phylogenetic DNA Barcoding,” Philosophical Trans. Royal Soc. B, vol. 363, pp. 39974002, 2008.
[20] C. Lakner, P. Van der Mark, J.P. Huelsenbeck, B. Larget, and F. Ronquist, “Efficiency of Markov Chain Monte Carlo Tree Proposals in Bayesian Phylogenetics,” Systematic Biology, vol. 57, pp. 86103, 2008.
[21] MUSCLE: Protein Multiple Sequence Alignment Software, http://www.drive5.commuscle, 2011.
[22] M. Owen, “Distance Computation in the Space of Phylogenetic Trees,” http://www.cam.cornell.edu/~maowen/pubthesis.pdf , 2011.
[23] M. Owen and J.S. Provan, “A Fast Algorithm for Computing Geodesic Distances in Tree Space,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 8, no. 1, pp. 213, Jan./Feb. 2011.
[24] Python for S60, Project Home Page: https://garage.maemo.org/projectspys60/, 2011.
[25] C.P. Robert and G. Casella, Monte Carlo Statistical Methods. Springer, 2004.
[26] D.F. Robinson and L.R. Foulds, “Comparison of Phylogenetic Trees,” Math. Biosciences, vol. 53, pp. 131147, 1981.
[27] C.L. Schardl, K.D. Craven, S. Speakman, A. Stromberg, A. Lindstrom, and R. Yoshida, “A Novel Test for HostSymbiont Codivergence Indicates Ancient Origin of Fungal Endophytes in Grasses,” Systematic Biology, vol. 57, no. 3, pp. 483498, 2008.
[28] K. Vogtmann, “Geodesics in the Space of Trees,” www.math. cornell.edu/~vogtmann/papers/TreeGeodesicss index.html, 2007.
[29] Z. Wang, F. LópezGiráldez, and J.P. Townsend, “Snapshots of Tree Space,” Evolutionary Bioinformatics, vol. 5, pp. 133136, 2009.
[30] D.J. Zwickl, “GARLI, Genetic Algorithm for Rapid Likelihood Inference,” version 0.94, http://code.google.com/pgarli/, 2006.