
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Katharina T. Huber, Andreas Spillner, Radosław Suchecki, Vincent Moulton, "Metrics on Multilabeled Trees: Interrelationships and Diameter Bounds," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 8, no. 4, pp. 10291040, July/August, 2011.  
BibTex  x  
@article{ 10.1109/TCBB.2010.122, author = {Katharina T. Huber and Andreas Spillner and Radosław Suchecki and Vincent Moulton}, title = {Metrics on Multilabeled Trees: Interrelationships and Diameter Bounds}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {8}, number = {4}, issn = {15455963}, year = {2011}, pages = {10291040}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2010.122}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Metrics on Multilabeled Trees: Interrelationships and Diameter Bounds IS  4 SN  15455963 SP1029 EP1040 EPD  10291040 A1  Katharina T. Huber, A1  Andreas Spillner, A1  Radosław Suchecki, A1  Vincent Moulton, PY  2011 KW  Multilabeled tree KW  MULtree KW  tree space KW  metric KW  domination KW  diameter bound. VL  8 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] K.T. Huber and V. Moulton, “Phylogenetic Networks from MultiLabeled Trees,” J. Math. Biology, vol. 52, pp. 613632, 2006.
[2] C. Semple and M. Steel, Phylogenetics. Oxford Univ. Press, 2003.
[3] G. Ganapathy, B. Goodson, R. Jansen, H. Le, V. Ramachandran, and T. Warnow, “Pattern Identification in Biogeography,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 3, no. 4, pp. 334346, Oct.Dec. 2006.
[4] R. Page, “Quantitative Cladistic Biogeography: Constructing and Comparing Area Cladograms,” Systematic Zoology, vol. 37, pp. 254270, 1988.
[5] L. Arvestad, A.C. Berglund, J. Lagergren, and B. Sennblad, “Bayesian Gene/Species Tree Reconciliation and Orthology Analysis Using MCMC,” Bioinformatics, vol. 19, pp. 715, 2003.
[6] M. Lott, A. Spillner, K.T. Huber, A. Petri, B. Oxelman, and V. Moulton, “Inferring Polyploid Phylogenies from MultiplyLabeled Gene Trees,” BMC Evolutionary Biology, vol. 9, 2009.
[7] A. Brysting, B. Oxelman, K.T. Huber, V. Moulton, and C. Brochmann, “Untangling Complex Histories of Genome Mergings in High Polyploids,” Systematic Biology, vol. 56, pp. 467476, 2007.
[8] M. Popp, P. Erixon, F. Eggens, and B. Oxelman, “Origin and Evolution of a Circumpolar Polyploid Species Complex in Silene (Caryophyllaceae) Inferred from Low Copy Nuclear RNA Polymerase Introns, rDNA, and Chloroplast DNA,” Systematic Botany, vol. 30, pp. 302313, 2005.
[9] T. Asai, H. Arimura, T. Uno, and S. Nakano, “Discovering Frequent Substructures in Large Unordered Trees,” Discovery Science, pp. 4761, Springer, 2003.
[10] S. Chou and C.L. Hsu, “MMDT: A MultiValued and MultiLabeled Decision Tree Classifier for Data Mining,” Expert Systems with Applications, vol. 28, pp. 799812, 2005.
[11] M. Crochemore and R. Verin, “Direct Construction of Compact Directed Acyclic Word Graphs,” Proc. Ann. Symp. Combinatorial Pattern Matching, pp. 116129, 1997.
[12] B. Allen and M. Steel, “Subtree Transfer Operations and Their Induced Metrics on Evolutionary Trees,” Annals of Combinatorics, vol. 5, pp. 115, 2001.
[13] A. Dobson, “Comparing the Shapes of Trees,” Combinatorial Mathematics III, vol. 452, pp. 95100, Springer, 1975.
[14] D. Robinson and L. Foulds, “Comparison of Phylogenetic Trees,” Math. Biosciences, vol. 53, pp. 131147, 1981.
[15] M. Křivánek, “Computing the Nearest Neighbor Interchange Metric for Unlabeled Binary Trees Is NPComplete,” J. Classification, vol. 3, pp. 5560, 1986.
[16] F. Matsen, “A Geometric Approach to Tree Shape Statistics,” Systematic Biology, vol. 55, pp. 652661, 2006.
[17] S. Guillemot, J. Jansson, and W.K. Sung, “Computing a Smallest MultiLabeled Phylogenetic Tree from Rooted Triplets,” Proc. Int'l Symp. Algorithms and Computation, pp. 12051214, 2009.
[18] G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente, “On Nakhleh's Metric for Reduced Phylogenetic Networks,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 6, no. 4, pp. 629638, Oct.Dec. 2009.
[19] S.J. Sul, S. Matthews, and T. Williams, “Using Tree Diversity to Compare Phylogenetic Heuristics,” BMC Bioinformatics, vol. 10, 2009.
[20] S. Whelan, “New Approaches to Phylogenetic Tree Search and Their Application to Large Numbers of Protein Alignments,” Systematic Biology, vol. 56, pp. 727740, 2007.
[21] M. Hendy, M. Steel, D. Penny, and I. Henderson, “Families of Trees and Consensus,” Classification and Related Methods of Data Analysis, H. Bock, ed., pp. 355362, Elsevier Science Publishers B.V., 1988.
[22] D. Hillis, T. Heath, and K. St. John, “Analysis and Visualization of Tree Space,” Systematic Biology, vol. 54, pp. 471482, 2005.
[23] D. Rosen, “Vicariant Patterns and Historical Explanation in Biogeography,” Systematic Zoology, vol. 27, pp. 159188, 1978.
[24] M. Hetland, “The Basic Principles of Metric Indexing,” Swarm Intelligence for MultiObjective Problems in Data Mining, pp. 199232, Springer, 2009.
[25] D. Bryant and M. Steel, “Computing the Distribution of a Tree Metric,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 6, no. 3, pp. 420426, JulySept. 2009.
[26] M. Steel and D. Penny, “Distributions of Tree Comparison Metrics—Some New Results,” Systematic Biology, vol. 42, pp. 126141, 1993.
[27] J. Felsenstein, J. Archie, W. Day, W. Maddison, C. Meacham, F. Rohlf, and D. Swofford, “The Newick Tree Format,” http://evolution.genetics.washington.edu/ phylipnewicktree.html, 1986.
[28] L. Nakhleh, “A Metric on the Space of Reduced Phylogenetic Networks,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 7, no. 2, pp. 218222, Apr.June 2010.
[29] A. MüllerMolina, K. Hirata, and T. Shinohara, “A Tree Distance Function Based on MultiSets,” New Frontiers in Applied Data Mining, pp. 8798, Springer, 2009.
[30] W. Goddard, E. Kubicka, G. Kubicki, and F. McMorris, “The Agreement Metric for Labeled Binary Trees,” Math. Biosciences, vol. 123, pp. 215226, 1994.
[31] D. Critchlow, D. Pearl, and C. Qian, “The Triples Distance for Rooted Bifurcating Phylogenetic Trees,” Systematic Biology, vol. 45, pp. 323334, 1996.
[32] G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente, “Metrics for Phylogenetic Networks II: Nodal and Triplets Metrics,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 6, no. 3, pp. 454469, JulySept. 2009.
[33] M. Bordewich and C. Semple, “On the Computational Complexity of the Rooted Subtree Prune and Regraft Distance,” Annals of Combinatorics, vol. 8, pp. 409423, 2004.
[34] D. Robinson, “Comparison of Labeled Trees with Valency Three,” J. Combinatorial Theory, Series B, vol. 11, pp. 105119, 1971.
[35] J. Hein, “Reconstructing Evolution of Sequences Subject to Recombination Using Parsimony,” Math. Biosciences, vol. 98, pp. 185200, 1990.
[36] D. Bryant, “The Splits in the Neighborhood of a Tree,” Annals of Combinatorics, vol. 8, pp. 111, 2004.
[37] L. Nakhleh, D. Ruths, and L. Wang, “RIATAHGT: A Fast and Accurate Heuristic for Reconstructing Horizontal Gene Transfer,” Proc. Ann. Int'l Conf. Computing and Combinatorics, pp. 8493, 2005.
[38] M. Li, J. Tromp, and L. Zhang, “On the Nearest Neighbour Interchange Distance between Evolutionary Trees,” J. Theoretical Biology, vol. 182, pp. 463467, 1996.
[39] D. Sleator, R. Tarjan, and W. Thurston, “Rotation Distance, Triangulations, and Hyperbolic Geometry,” J. Am. Math. Soc., vol. 1, pp. 647681, 1988.
[40] A. Kupczok, A. von Haeseler, and S. Klaere, “An Exact Algorithm for the Geodesic Distance between Phylogenetic Trees,” J. Computational Biology, vol. 15, pp. 577591, 2008.
[41] M. Steel and L. Székely, “An Improved Bound on the Maximum Agreement Subtree Problem,” Applied Math. Letters, vol. 22, pp. 17781780, 2009.
[42] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang, “On Distances between Phylogenetic Trees,” Proc. Ann. ACMSIAM Symp. Discrete Algorithms, pp. 427436, 1997.
[43] G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente, “Metrics for Phylogenetic Networks I: Generalizations of the RobinsonFoulds Metric,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 6, no. 1, pp. 4661, Jan.Mar. 2009.
[44] G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente, “The Comparison of TreeSibling Time Consistent Phylogenetic Networks Is Graph IsomorphismComplete,” arXiv:0902.4640v1 [qbio.PE], 2009.