The Community for Technology Leaders
RSS Icon
Issue No.04 - October-December (2009 vol.6)
pp: 667-681
Judith Keijsper , Technische Universiteit Eindhoven, Eindhoven
Steven Kelk , Centrum voor Wiskunde en Informatica (CWI), Amsterdam
Leen Stougie , Centrum voor Wiskunde en Informatica (CWI) and Free University, Amsterdam
Ferry Hagen , Centraalbureau voor Schimmelcultures (CBS), Utrecht
Teun Boekhout , Centraalbureau voor Schimmelcultures (CBS), Utrecht
Jansson and Sung showed that, given a dense set of input triplets T (representing hypotheses about the local evolutionary relationships of triplets of taxa), it is possible to determine in polynomial time whether there exists a level-1 network consistent with T, and if so, to construct such a network [24]. Here, we extend this work by showing that this problem is even polynomial time solvable for the construction of level-2 networks. This shows that, assuming density, it is tractable to construct plausible evolutionary histories from input triplets even when such histories are heavily nontree-like. This further strengthens the case for the use of triplet-based methods in the construction of phylogenetic networks. We also implemented the algorithm and applied it to yeast data.
Phylogenetic networks, level-2, triplets, reticulations, polynomial time algorithms.
Judith Keijsper, Steven Kelk, Leen Stougie, Ferry Hagen, Teun Boekhout, "Constructing Level-2 Phylogenetic Networks from Triplets", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.6, no. 4, pp. 667-681, October-December 2009, doi:10.1109/TCBB.2009.22
[1] A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman, “Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions,” SIAM J. Computing, vol. 10, no. 3, pp. 405-421, 1981.
[2] D. Bryant, “Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in Phylogenetic Analysis,” PhD dissertation, Univ. of Canterbury, 1997.
[3] D. Bryant and V. Moulton, “Neighbor-Net: An Agglomerative Method for the Construction of Phylogenetic Networks,” Molecular Biology and Evolution, vol. 21, no. 2, pp. 255-265, 2004.
[4] D. Bryant and M. Steel, “Constructing Optimal Trees from Quartets,” J. Algorithms, vol. 38, no. 1, pp. 237-259, 2001.
[5] J. Byrka, P. Gawrychowski, K.T. Huber, and S. Kelk, “Worst-Case Optimal Approximation Algorithms for Maximizing Triplet Consistency within Phylogenetic Networks,” arXiv:0710.3258v3 [q-bio.PE], 2008.
[6] H.-L. Chan, J. Jansson, T.W. Lam, and S.-M. Yiu, “Reconstructing an Ultrametric Galled Phylogenetic Network from a Distance Matrix,” J. Bioinformatics and Computational Biology, vol. 4, no. 4, pp. 807-832, 2006.
[7] P.L. Erdös, M.A. Steel, L.A. Szekely, and T. Warnow, “A Few Logs Suffice to Build (Almost) All Trees (Part II),” Theoretical Computer Science, vol. 221, no. 1, pp. 77-118, 1999.
[8] L. Gaasieniec, J. Jansson, A. Lingas, and A. Östlin, “On the Complexity of Constructing Evolutionary Trees,” J. Combinatorial Optimization, vol. 3, pp. 183-197, 1999.
[9] S. Guindon and O. Gascuel, “A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood,” Systematic Biology, vol. 52, no. 5, pp. 696-704, 2003.
[10] D. Gusfield, S. Eddhu, and C. Langley, “Optimal, Efficient Reconstruction of Phylogenetic Networks with Constrained Recombination,” J. Bioinformatics and Computational Biology, vol. 2, pp. 173-213, 2004.
[11] Y.-J. He, T.N.D. Huynh, J. Jansson, and W.-K. Sung, “Inferring Phylogenetic Relationships Avoiding Forbidden Rooted Triplets,” J. Bioinformatics and Computational Biology, vol. 4, no. 1, pp. 59-74, 2006.
[12] M. Holder and P.O. Lewis, “Phylogeny Estimation: Traditional and Bayesian Approaches,” Nature Rev. Genetics, vol. 4, pp. 275-284, 2003.
[13] K.T. Huber, B. Oxelman, M. Lott, and V. Moulton, “Reconstructing the Evolutionary History of Polyploids from Multilabeled Trees,” Molecular Biology and Evolution, vol. 23, no. 9, pp. 1784-1791, 2006.
[14] D.H. Huson and D. Bryant, “Application of Phylogenetic Networks in Evolutionary Studies,” Molecular Biology and Evolution, vol. 23, no. 2, pp. 254-267, 2006.
[15] D.H. Huson and T.H. Klöpper, “Beyond Galled Trees—Decomposition and Computation of Galled Networks,” Proc. Int'l Conf. Research in Computational Molecular Biology (RECOMB '07), pp.211-225, 2007.
[16] L.J.J. van Iersel, J.C.M. Keijsper, S.M. Kelk, and L. Stougie, “Constructing Level-2 Phylogenetic Networks from Triplets,” arXiv:0707.2890v1 [q-bio.PE], 2007.
[17] L.J.J. van Iersel, J.C.M. Keijsper, S.M. Kelk, L. Stougie, F. Hagen, and T. Boekhout, “Constructing Level-2 Phylogenetic Networks from Triplets,” Proc. 12th Ann. Int'l Conf. Research in Computational Molecular Biology (RECOMB '08), pp. 450-462, 2008.
[18] L.J.J. van Iersel, S.M. Kelk, and M. Mnich, “Uniqueness, Intractability and Exact Algorithms: Reflections on Level-k Phylogenetic Networks,” to be published in J. Bioinformatics and Computational Biology.
[19] J. Jansson, personal communication, Kyushu Univ., 2007.
[20] J. Jansson, “On the Complexity of Inferring Rooted Evolutionary Trees,” Proc. Brazilian Symp. Graphs, Algorithms and Combinatorics (GRACO '01), pp. 121-125, 2001.
[21] J. Jansson, J.H.-K. Ng, K. Sadakane, and W.-K. Sung, “Rooted Maximum Agreement Supertrees,” Algorithmica, vol. 43, pp. 293-307, 2005.
[22] J. Jansson, N.B. Nguyen, and W.-K. Sung, “Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network,” SIAM J. Computing, vol. 35, no. 5, pp. 1098-1121, 2006.
[23] J. Jansson and W.-K. Sung, “Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets,” Proc. Conf. Computing and Combinatorics (COCOON '04), pp. 462-472, 2004.
[24] J. Jansson and W.-K. Sung, “Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets,” Theoretical Computer Science, vol. 363, pp. 60-68, 2006.
[25] T. Jiang, P.E. Kearney, and M. Li, “A Polynomial Time Approximation Scheme for Inferring Evolutionary Trees from Quartet Topologies and Its Application,” SIAM J. Computing, vol. 30, no. 6, pp. 1942-1961, 2000.
[26] S. Kidd, F. Hagen, R. Tscharke, M. Huynh, K. Bartlett, M. Fyfe, L. MacDougall, T. Boekhout, K.J. Kwon-Chung, and W. Meyer, “A Rare Genotype of Cryptococcus Gattii Caused the Cryptococcosis Outbreak on Vancouver Island (British Columbia, Canada),” Proc. Nat'l Academy of Sciences USA, vol. 101, pp.17258-17263, 2004.
[27] “LEVEL2: A Fast Method for Constructing Level-2 Phylogenetic Networks from Dense Sets of Rooted Triplets,” http://home and http:/level2.source, 2009.
[28] V. Makarenkov, “T-REX: Reconstructing and Visualizing Phylogenetic Trees and Reticulation Networks,” Bioinformatics, vol. 17, no. 7, pp. 664-668, 2001.
[29] V. Makarenkov, D. Kevorkov, and P. Legendre, “Phylogenetic Network Reconstruction Approaches,” Applied Mycology and Biotechnology, vol. 6. pp. 61-97, 2006.
[30] B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, and R. Timme, “Phylogenetic Networks: Modeling, Reconstructibility, and Accuracy,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 1, no. 1, pp. 13-23, Jan.-Mar. 2004.
[31] C. Semple and M. Steel, Phylogenetics. Oxford Univ. Press, 2003.
[32] M. Steel, “The Complexity of Reconstructing Trees from Qualitative Characters and Subtrees,” J. Classification, vol. 9, pp. 91-116, 1992.
[33] R.E. Tarjan and U. Vishkin, “An Efficient Parallel Biconnectivity Algorithm,” SIAM J. Computing, vol. 14, no. 4, pp. 862-874, 1985.
[34] L. Wang, K. Zhang, and L. Zhang, “Perfect Phylogenetic Networks with Recombination,” J. Computational Biology, vol. 8, no. 1, pp. 69-78, 2001.
[35] B.Y. Wu, “Constructing the Maximum Consensus Tree from Rooted Triples,” J. Combinatorial Optimization, vol. 8, pp. 29-39, 2004.
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool