The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January-March (2009 vol.6)
pp: 158-170
Sridharakumar Narasimhan , ITT Madras, Chennai
Rajanikanth Vadigepalli , Thomas Jefferson University, Philadelphia
ABSTRACT
The study of gene regulatory networks is a significant problem in systems biology. Of particular interest is the problem of determining the unknown or hidden higher level regulatory signals by using gene expression data from DNA microarray experiments. Several studies in this area have demonstrated the critical aspect of the network structure in tackling the network modelling problem. Structural analysis of systems has proved useful in a number of contexts, viz., observability, controllability, fault diagnosis, sparse matrix computations etc. In this contribution, we formally define structural properties that are relevant to Gene Regulatory Networks. We explore the structural implications of certain quantitative methods and explain completely the connections between the identifiability conditions and structural criteria of observability and distinguishability. We illustrate these concepts in case studies using representative biologically motivated network examples. The present work bridges the quantitative modelling methods with those based on the structural analysis.
INDEX TERMS
Biology and genetics, Graph Theory, Network Models, System Identification, Data Analysis
CITATION
Sridharakumar Narasimhan, Rajanikanth Vadigepalli, "Structural Properties of Gene Regulatory Networks: Definitions and Connections", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.6, no. 1, pp. 158-170, January-March 2009, doi:10.1109/TCBB.2007.70231
REFERENCES
[1] O. Wolkenhauer, “Mathematical Modelling in the Post-Genome Era: Understanding Genome Expression and Regulation—A System Theoretic Approach,” BioSystems, vol. 65, pp. 1-18, 2002.
[2] H. Kitano, “Systems Biology: A Brief Overview,” Science, vol. 295, pp. 1662-1664, 2002.
[3] P. Uetz, L. Giot, G. Cagney, T. Mansfield, R. Judson, J. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. Rothberg, “A Comprehensive Analysis of Protein-Protein Interactions in Saccharomyces Cerevisiae,” Nature, vol. 403, no. 6770, pp. 623-627, Feb. 2000.
[4] E.H. Davidson, J.P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.-H. Yuh, T. Minokawa, G. Amore, V. Hinman, C. Arenas-Mena, O. Otim, C.T. Brown, C.B. Livi, P.Y. Lee, R. Revilla, A.G. Rust, Z. jun Pan, M.J. Schilstra, P.J.C. Clarke, M.I. Arnone, L. Rowen, R.A. Cameron, D.R. McClay, L. Hood, and H. Bolouri, “A Genomic Regulatory Network for Development,” Science, vol. 295, no. 5560, pp. 1669-1678, Mar. 2002.
[5] M.J. Herrgrd, M.W. Covert, and B. Palsson, “Reconstruction of Microbial Transcriptional Regulatory Networks,” Current Opinion in Biotechnology, vol. 15, no. 1, pp. 70-77, Feb. 2004.
[6] S. Li, C.M. Armstrong, N. Bertin, H. Ge, S. Milstein, M. Boxem, P.-O. Vidalain, J.-D.J. Han, A. Chesneau, T. Hao, D.S. Goldberg, N. Li, M. Martinez, J.-F. Rual, P. Lamesch, L. Xu, M. Tewari, S.L. Wong, L.V. Zhang, G.F. Berriz, L. Jacotot, P. Vaglio, J. Reboul, T. Hirozane-Kishikawa, Q. Li, H.W. Gabel, A. Elewa, B. Baumgartner, D.J. Rose, H. Yu, S. Bosak, R. Sequerra, A. Fraser, S.E. Mango, amM. Saxton, S. Strome, S.V.D. Heuvel, F. Piano, J. Vandenhaute, C. Sardet, M. Gerstein, L. Doucette-Stamm, K.C. Gunsalus, J.W. Harper, M.E. Cusick, F.P. Roth, D.E. Hill, and M. Vidal, “A Map of the Interactome Network of the Metazoan C. Elegans,” Science, vol. 303, no. 5657, pp. 540-543, Jan. 2004.
[7] K. Sachs, O. Perez, D. Pe'er, D.A. Lauffenburger, and G.P. Nolan, “Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data,” Science, vol. 308, no. 5721, pp. 523-529, Apr. 2005.
[8] J.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G.F. Berriz, F.D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, N. Klitgord, C. Simon, M. Boxem, S. Milstein, J. Rosenberg, D.S. Goldberg, L.V. Zhang, S.L. Wong, G. Franklin, S. Li, J.S. Albala, J. Lim, C. Fraughton, E. Llamosas, S. Cevik, C. Bex, P. Lamesch, R.S. Sikorski, J. Vandenhaute, H.Y. Zoghbi, A. Smolyar, S. Bosak, R. Sequerra, L. Doucette-Stamm, M.E. Cusick, D.E. Hill, F.P. Roth, and M. Vidal, “Towards a Proteome-Scale Map of the Human Protein-Protein Interaction Network,” Nature, vol. 437, no. 7062, pp. 1173-1178, Oct. 2005.
[9] S.E. Calvano, W. Xiao, D.R. Richards, R.M. Felciano, H.V. Baker, R.J. Cho, R.O. Chen, B.H. Brownstein, J.P. Cobb, S.K. Tschoeke, C. Miller-Graziano, L.L. Moldawer, M.N. Mindrinos, R.W. Davis, R.G. Tompkins, S.F. Lowry, and S.F. Lowry, “A Network-Based Analysis of Systemic Inflammation in Humans,” Nature, vol. 437, no. 7061, pp. 1032-1037, Oct. 2005.
[10] H. Jeong, S. Mason, A. Barabsi, and Z. Oltvai, “Lethality and Centrality in Protein Networks,” Nature, vol. 411, no. 6833, pp. 41-42, May 2001.
[11] C. Rao and A. Arkin, “Control Motifs for Intracellular Regulatory Networks,” Ann. Rev. of Biomedical Eng., vol. 3, pp. 391-419, 2001.
[12] M.P. Joy, A. Brock, D.E. Ingber, and S. Huang, “High-Betweenness Proteins in the Yeast Protein Interaction Network,” J. Biomedicine and Biotechnology, vol. 2005, no. 2, pp. 96-103, June 2005.
[13] M.J. Herrgrd, B.-S. Lee, V. Portnoy, and B. Palsson, “Integrated Analysis of Regulatory and Metabolic Networks Reveals Novel Regulatory Mechanisms in Saccharomyces Cerevisiae,” Genome Research, vol. 16, no. 5, pp. 627-635, May 2006.
[14] S. Raychaudhuri, J.M. Stuart, and R.S. Altman, “Principal Components Analysis to Summarize Microarray Experiments: Application to Sporulation Time Series,” Proc. Pacific Symp. Biocomputing (PSB '00), vol. 5, pp. 455-456, 2000.
[15] N.S. Holter, M. Mitra, A. Maritan, M. Cieplak, J.R. Banavar, and N.R. Fedoroff, “Fundamental Patterns Underlying Gene Expression Profiles: Simplicity from Complexity,” Proc. Nat'l Academy of Sciences, vol. 97, pp. 8409-8414, 2000.
[16] O. Alter, P. Brown, and D. Botstein, “Singular Value Decomposition for Genome-Wide Expression Data Processing and Modeling,” Proc. Nat'l Academy of Sciences, vol. 97, pp. 10101-10106, 2000.
[17] H. Bussemaker, H. Li, and E. Siggia, “Regulatory Element Detection Using Correlation with Expression,” Nature Genetics, vol. 27, pp. 167-171, 2001.
[18] M.K. Yeung, J. Tegnér, and J.J. Collins, “Reverse Engineering Gene Networks Using Singular Value Decomposition and Robust Regression,” Proc. Nat'l Academy of Sciences, vol. 99, pp. 6163-6168, 2002.
[19] W. Liebermeister, “Linear Modes of Gene Expression Determined by Independent Component Analysis,” Bioinformatics, vol. 18, pp.51-60, 2002.
[20] W. Wang, J. Cherry, D. Botstein, and H. Li, “A Systematic Approach to Reconstructing Transcription Networks in Saccharomyces Cerevisiae,” Proc. Nat'l Academy of Sciences, vol. 99, pp.16893-16898, 2002.
[21] J. Liao, R. Boscolo, Y.-L. Yang, L.M. Tran, C. Sabatti, and V.P. Roychowdhury, “Network Component Analysis: Reconstruction of Regulatory Signals in Biological Systems,” Proc. Nat'l Academy of Sciences, vol. 100, pp. 15522-15527, 2003.
[22] M. Chaves, R. Albert, and E. Sontag, “Robustness and Fragility of Boolean Models for Genetic Regulatory Networks,” J. Theoretical Biology, vol. 235, no. 3, pp. 431-449, Aug. 2005.
[23] L. Tran, M. Brynildsen, K. Kao, J. Suen, and J. Liao, “gNCA: A Framework for Determining Transcription Factor Activity Based on Transcriptome: Identifiability and Numerical Implementation,” Metabolic Eng., vol. 7, pp. 128-141, 2005.
[24] C.-T. Lin, “Structural Controllability,” IEEE Trans. Automatic Control, vol. 19, pp. 201-208, 1974.
[25] Y. Ishida, N. Adachi, and H. Tokumaru, “Diagnosability and Distinguishability Analysis and Its Applications,” IEEE Trans. Reliability, vol. 36, pp. 531-538, 1987.
[26] R. Raghuraj, M. Bhushan, and R. Rengaswamy, “Locating Sensors in Complex Chemical Plants Based on Fault Diagnostic Observability Criteria,” AIChE J., vol. 45, no. 2, p. 310-322, 1999.
[27] R. Boscolo, J. Liao, C. Sabatti, and V.P. Roychowdhury, “A Generalized Framework for Network Component Analysis,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 2, no. 4, pp. 289-301, Oct.-Dec. 2005.
[28] L. Ljung, System Identification, Theory for the User, second ed. Prentice Hall, 1999.
[29] B. Ren, F. Robert, J. Wyrick, O. Aparicio, E. Jennings, I. Simon, J. Zeitlinger, J. Schreiber, N. Hannett, E. Kanin, T. Volkert, C. Wilson, S. Bell, and R. Young, “Genome-Wide Location and Function of DNA Binding Proteins,” Science, vol. 290, pp. 2306-2309, 2000.
[30] J. Wyrick and R. Young, “Deciphering Gene Expression Regulatory Networks,” Current Opinion in Genetics and Development, vol. 12, pp. 130-136, 2002.
[31] R. Hawkins and B. Ren, “Genome-Wide Location Analysis: Insights on Transcriptional Regulation,” Human Molecular Genetics, vol. 15, Spec no. 1, pp. R1-R7, 2006.
[32] R. Vadigepalli, P. Chakravarthula, Z.D.E. , J.S. Schwaber, and G.E. Gonye, “Paint: A Promoter Analysis and Interaction Network Generation Tool for Genetic Regulatory Network Identification,” OMICS: A Journal of Integrative Biology, vol. 7, pp. 235-252, 2003.
[33] S. Aerts, P. Van Loo, Y. Moreau, and B. De Moor, “A Genetic Algorithm for the Detection of New CIS-Regulatory Modules in Sets of Coregulated Genes,” Bioinformatics, vol. 20, pp. 1974-1976, 2004.
[34] A. Sandelin, W. Wasserman, and B. Lenhard, “ConSite: Web-Based Prediction of Regulatory Elements Using Cross-Species Comparison,” Nucleic Acids Research, vol. 32, pp. W249-W252, 2004.
[35] W. Wasserman and A. Sandelin, “Applied Bioinformatics for the Identification of Regulatory Elements,” Nature Rev. Genetics, vol. 5, pp. 276-287, 2004.
[36] R. Shamir, A. Maron-Katz, A. Tanay, C. Linhart, I. Steinfeld, R. Sharan, Y. Shiloh, and R. Elkon, “Expander—An Integrative Program Suite for Microarray Data Analysis,” BMC Bioinformatics, vol. 6, p. 232, 2005.
[37] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Dover, 1998.
[38] A. Georgiou and C.A. Floudas, “An Optimization Model for Generic Rank Determination of Structural Matrices,” Int'l J. Control, vol. 49, pp. 1633-1644, 1989.
[39] T.F. Coleman and A. Pothen, “The Null Space Problem—I: Complexity,” SIAM J. Algebraic and Discrete Methods, vol. 7, pp.527-537, 1986.
[40] T.F. Coleman and A. Pothen, “The Null Space Problem—II: Algorithms,” SIAM J. Algebraic and Discrete Methods, vol. 8, pp.544-563, 1987.
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool