
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Marília D.V. Braga, MarieFrance Sagot, Celine Scornavacca, Eric Tannier, "Exploring the Solution Space of Sorting by Reversals, with Experiments and an Application to Evolution," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 5, no. 3, pp. 348356, JulySeptember, 2008.  
BibTex  x  
@article{ 10.1109/TCBB.2008.16, author = {Marília D.V. Braga and MarieFrance Sagot and Celine Scornavacca and Eric Tannier}, title = {Exploring the Solution Space of Sorting by Reversals, with Experiments and an Application to Evolution}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {5}, number = {3}, issn = {15455963}, year = {2008}, pages = {348356}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2008.16}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Exploring the Solution Space of Sorting by Reversals, with Experiments and an Application to Evolution IS  3 SN  15455963 SP348 EP356 EPD  348356 A1  Marília D.V. Braga, A1  MarieFrance Sagot, A1  Celine Scornavacca, A1  Eric Tannier, PY  2008 KW  genome rearrangements KW  signed permutations KW  sorting by reversals KW  common intervals KW  perfect sorting KW  evolution KW  sex chromosomes VL  5 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] Y. Ajana, J.F. Lefebvre, E. Tillier, and N. ElMabrouk, “Exploring the Set of All Minimal Sequences of Reversals—An Application to Test the ReplicationDirected Reversal Hypothesis,” Proc. Second Int'l Workshop Algorithms in Bioinformatics (WABI '02), vol. 2452, pp. 300315, 2002.
[2] D.A. Bader, B.M.E. Moret, and M. Yan, “A LinearTime Algorithm for Computing Inversion Distances Between Signed Permutations with an Experimental Study,” J. Computational Biology, vol. 8, no. 5, pp. 483491, 2001.
[3] S. Berard, A. Bergeron, and C. Chauve, “Conserved Structures in Evolution Scenarios,” RCG 2004, Lecture Notes in Bioinformatics, vol. 3388, pp. 115, 2005.
[4] S. Berard, A. Bergeron, C. Chauve, and C. Paul, “Perfect Sorting by Reversals Is Not Always Difficult,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, no. 1, pp. 416, Jan.Mar. 2007.
[5] A. Bergeron, C. Chauve, T. Hartmann, and K. StOnge, “On the Properties of Sequences of Reversals That Sort a Signed Permutation,” Proc. Journées Ouvertes Biologie, Informatique et Mathématiques (JOBIM '02), pp. 99108, 2002.
[6] A. Bergeron, S. Heber, and J. Stoye, “Common Intervals and Sorting by Reversals: A Marriage of Necessity,” Bioinformatics, vol. 18 (Suppl. 2), pp. S5463, 2002.
[7] A. Bergeron, J. Mixtacki, and J. Stoye, “The Inversion Distance Problem,” Math. of Evolution and Phylogeny, O. Gascuel, ed., pp.262290, Oxford Univ. Press, 2005.
[8] M.D.V Braga, M.F. Sagot, C. Scornavacca, and E. Tannier, “The Solution Space of Sorting by Reversals,” Proc. Int'l Symp. Bioinformatics Research and Applications (ISBRA '07), vol. 4463, pp.293304, 2007.
[9] G. Brightwell and P. Winkler, “Counting Linear Extensions is #PComplete,” Proc. 23rd Ann. ACM Symp. Theory of Computing (STOC), 1991.
[10] The Book of Traces, V. Diekert, G. Rozenberg, eds. World Scientific, 1995.
[11] Y. Diekmann, M.F. Sagot, and E. Tannier, “Evolution under Reversals: Parsimony and Conservation of Common Intervals,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, no. 2, pp. 301309, Apr.June 2007. (A preliminary version appeared in COCOON 2005, LNCS 3595, 4251, 2005.)
[12] R.P. Dilworth, “A Decomposition Theorem for Partially Ordered Sets,” Annals of Math., vol. 51, pp. 161166, 1950.
[13] D.R. Fulkerson, “Note on Dilworth's Decomposition Theorem for Partially Ordered Sets,” Proc. Am. Math. Soc., vol. 7, pp. 701702, 1956.
[14] Y. Han, “Improving the Efficiency of Sorting by Reversals,” Proc. Int'l Conf. Bioinformatics and Computational Biology, 2006.
[15] S. Hannenhalli and P. Pevzner, “Transforming Cabbage into Turnip (Polynomial Algorithm for Sorting Signed Permutations by Reversals),” J. ACM, vol. 46, pp. 127, 1999.
[16] B.T. Lahn and D.C. Page, “Four Evolutionary Strata on the Human X Chromosome,” Science, vol. 286, pp. 964967, 1999.
[17] Z. Li, L. Wang, and K. Zhang, “Algorithmic Approaches for Genome Rearrangement: A Review,” IEEE Trans. Systems, Man, and Cybernetics, vol. 36, pp. 636648, 2006.
[18] S. Ohno, Sex Chromosomes and SexLinked Genes. Springer, 1967.
[19] M.T. Ross et al., “The DNA Sequence of the Human X Chromosome,” Nature, vol. 434, pp. 325337, 2005.
[20] A. Siepel, “An Algorithm to Enumerate Sorting Reversals for Signed Permutations,” J. Computational Biology, vol. 10, pp. 575597, 2003.
[21] H. Skaletsky et al., “The MaleSpecific Region of the Human Y Chromosome is a Mosaic of Discrete Sequence Classes,” Nature, vol. 423, pp. 825837, 2003.
[22] G. Steiner, “An Algorithm to Generate the Ideals of a Partial Order,” Operations Research Letters, vol. 5, no. 6, pp. 317320, 1986.
[23] G. Steiner, “Polynomial Algorithms to Count Linear Extensions in Certain Posets,” Congressus Numerantium, vol. 75, pp. 7190, 1990.
[24] E. Tannier, A. Bergeron, and M.F. Sagot, “Advances on Sorting by Reversals,” Discrete Applied Math., vol. 155, nos. 67, pp. 881888, 2007.