
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Matthias Bernt, Daniel Merkle, Martin Middendorf, "Solving the Preserving Reversal Median Problem," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 5, no. 3, pp. 332347, JulySeptember, 2008.  
BibTex  x  
@article{ 10.1109/TCBB.2008.39, author = {Matthias Bernt and Daniel Merkle and Martin Middendorf}, title = {Solving the Preserving Reversal Median Problem}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {5}, number = {3}, issn = {15455963}, year = {2008}, pages = {332347}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2008.39}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Solving the Preserving Reversal Median Problem IS  3 SN  15455963 SP332 EP347 EPD  332347 A1  Matthias Bernt, A1  Daniel Merkle, A1  Martin Middendorf, PY  2008 KW  Biology and genetics KW  Permutations and combinations VL  5 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] G. Bourque and P.A. Pevzner, “GenomeScale Evolution: Reconstructing Gene Orders in the Ancestral Species,” Genome Research, vol. 12, no. 1, pp. 2636, 2002.
[2] B. Moret, A. Siepel, J. Tang, and T. Liu, “Inversion Medians Outperform Breakpoint Medians in Phylogeny Reconstruction from GeneOrder Data,” Proc. Second Int'l Workshop Algorithms in Bioinformatics (WABI '02), pp. 521536, 2002.
[3] B. Moret, J. Tang, and T. Warnow, Mathematics of Evolution and Phylogeny, ch. Reconstructing Phylogenies from GeneContent and GeneOrder Data, pp. 321352, Oxford Univ. Press, 2005.
[4] M. Bernt, D. Merkle, and M. Middendorf, “Using Median Sets for Inferring Phylogenetic Trees,” Bioinformatics, vol. 23, no. 2, pp.e129e135, 2007.
[5] A. Bergeron and J. Stoye, “On the Similarity of Sets of Permutations and Its Applications to Genome Comparison,” J.Computational Biology, vol. 13, no. 7, pp. 13451354, 2006.
[6] T. Uno and M. Yagiura, “Fast Algorithms to Enumerate All Common Intervals of Two Permutations,” Algorithmica, vol. 2, no. 26, pp. 290309, 2000.
[7] S. Heber and J. Stoye, “Finding All Common Intervals of $k$ Permutations,” Proc. 12th Ann. Symp. Combinatorial Pattern Matching (CPM '01), pp. 207218, 2001.
[8] G. Didier, “Common Intervals of Two Sequences,” Proc. Third Int'l Workshop Algorithms in Bioinformatics (WABI '03), pp. 1724, 2003.
[9] T. Schmidt and J. Stoye, “Quadratic Time Algorithms for Finding Common Intervals in Two and More Sequences,” Proc. 15th Ann. Symp. Combinatorial Pattern Matching (CPM '04), pp. 347358, 2004.
[10] A. Bergeron, M. Blanchette, A. Chateau, and C. Chauve, “Reconstructing Ancestral Gene Orders Using Conserved Intervals,” Proc. Fourth Int'l Workshop Algorithms in Bioinformatics (WABI '04), pp. 1425, 2004.
[11] M. Bernt, D. Merkle, and M. Middendorf, “Genome Rearrangement Based on Reversals that Preserve Conserved Intervals,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 3, no. 3, pp. 275288, JulySept. 2006.
[12] S. Bérard, A. Bergeron, and C. Chauve, “Conservation of Combinatorial Structures in Evolution Scenarios,” Proc. Second RECOMB Comparative Genomics Satellite Workshop (RCG '04), pp. 115, 2004.
[13] M. Bernt, D. Merkle, and M. Middendorf, “The Reversal Median Problem, Common Intervals, and Mitochondrial Gene Orders,” Computational Life Sciences II—Proc. Second Int'l Symp. CompLife, pp. 5263, 2006.
[14] Y. Diekmann, M.F. Sagot, and E. Tannier, “Evolution under Reversals: Parsimony and Conservation of Common Intervals,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, pp. 301309, 2007.
[15] M. Figeac and J. Varré, “Sorting by Reversals with Common Intervals,” Proc. Fourth Int'l Workshop Algorithms in Bioinformatics (WABI '04), pp. 2637, 2004.
[16] S. Hannenhalli and P. Pevzner, “Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals,” Proc. 27th Ann. ACM Symp. Theory of Computing (STOC '95), pp. 178189, 1995.
[17] A. Bergeron, J. Mixtacki, and J. Stoye, “Reversal Distance without Hurdles and Fortresses,” Proc. 15th Ann. Symp. Combinatorial Pattern Matching (CPM '04), pp. 388399, 2004.
[18] E. Tannier, A. Bergeron, and M.F. Sagot, “Advances in Sorting by Reversals,” Discrete Applied Math., vol. 155, no. 67, p. 888, 2006.
[19] A. Caprara, “The Reversal Median Problem,” INFORMS J. Computing, vol. 15, no. 1, pp. 93113, 2003.
[20] A. Siepel and B. Moret, “Finding an Optimal Inversion Median: Experimental Results,” Proc. First Int'l Workshop Algorithms in Bioinformatics (WABI '01), pp. 189203, 2001.
[21] M. Bernt, D. Merkle, and M. Middendorf, “A Parallel Algorithm for Solving the Reversal Median Problem,” Proc. Parallel Processing and Applied Math.BioComputing Workshop (PBC '05), pp. 10891096, 2005.
[22] S. Bérard, A. Bergeron, C. Chauve, and C. Paul, “Perfect Sorting by Reversals Is Not Always Difficult,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 4, no. 1, pp. 416, Jan. 2007.
[23] R. Eres, G.M. Landau, and L. Parida, “A Combinatorial Approach to Automatic Discovery of ClusterPatterns,” Proc. Third Int'l Workshop Algorithms in Bioinformatics (WABI '03), pp. 139150, 2003.
[24] A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot, “Computing Common Intervals of $K$ Permutations, with Applications to Modular Decomposition of Graphs,” Proc. 13th Ann. European Symp. Algorithms (ESA '05), pp. 779790, 2005.
[25] A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot, “Computing Common Intervals of $K$ Permutations, with Applications to Modular Decomposition of Graphs,” SIAM J. Discrete Math., to appear.
[26] J. Boore, Mitochondrial Gene Arrangement Database, www.hapmap.orghttp://dx.doi.org/10.1038/ nature04072http://dx.doi.org/10.1038/nature04338http:/ evogen.jgi.doe.gov/, 2006.
[27] M. Cosner, R. Jansen, B. Moret, L. Raubeson, L.S. Wang, T. Warnow, and S. Wyman, “An Empirical Comparison of Phylogenetic Methods on Chloroplast Gene Order Data in Campanulaceae,” Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, pp. 99121, Kluwer Academic Publishers, 2000.
[28] D. Bader, B. Moret, and M. Yan, “A LinearTime Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study,” J. Computational Biology, vol. 5, no. 8, pp.483491, 2001.