
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Srinath Sridhar, Fumei Lam, Guy E. Blelloch, R. Ravi, Russell Schwartz, "Mixed Integer Linear Programming for MaximumParsimony Phylogeny Inference," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 5, no. 3, pp. 323331, JulySeptember, 2008.  
BibTex  x  
@article{ 10.1109/TCBB.2008.26, author = {Srinath Sridhar and Fumei Lam and Guy E. Blelloch and R. Ravi and Russell Schwartz}, title = {Mixed Integer Linear Programming for MaximumParsimony Phylogeny Inference}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {5}, number = {3}, issn = {15455963}, year = {2008}, pages = {323331}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2008.26}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Mixed Integer Linear Programming for MaximumParsimony Phylogeny Inference IS  3 SN  15455963 SP323 EP331 EPD  323331 A1  Srinath Sridhar, A1  Fumei Lam, A1  Guy E. Blelloch, A1  R. Ravi, A1  Russell Schwartz, PY  2008 KW  Computational Biology KW  Algorithms KW  Integer Linear Programming KW  Steiner tree problem KW  Phylogenetic tree reconstruction KW  Maximum parsimony VL  5 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness. W.H. Freeman & Co., 1979.
[2] Int'l HapMap Consortium, “The International HapMap Project,” Nature, vol. 426, pp. 789796, , 2005.
[3] E.M. Smigielski, K. Sirotkin, M. Ward, and S.T. Sherry, “dbSNP: A Database of Single Nucleotide Polymorphisms,” Nucleic Acids Research, vol. 28, no. 1, pp. 352355, 2000.
[4] Chimpanzee Sequencing and Analysis Consortium, “Initial Sequence of the Chimpanzee Genome and Comparison with the Human Genome,” Nature, vol. 437, no. 7055, pp. 6987, , 2005.
[5] K. LinbladToh, E. Winchester, M.J. Daly, D.G. Wang, J.N. Hirschhorn, J.P. Laviolette, K. Ardlie, D.E. Reich, E. Robinson, P. Sklar, N. Shah, D. Thomas, J.B. Fan, T. Gingeras, J. Warrington, N. Patil, T.J. Hudson, and E.S. Lander, “LargeScale Discovery and Genotyping of SingleNucleotide Polymorphisms in the Mouse,” Nature Genetics, vol. 24, no. 4, pp. 381386, 2000.
[6] K. LinbladToh, C.M. Wade, T.S. Mikkelsen, E.K. Karlsson, D.B. Jaffe, M. Kamal, M. Clamp, J.L. Chang, E.J. Kulbokas, M.C. Zody, E. Mauceli, X. Xie, M. Breen, R.K. Wayne, E.A. Ostrander, C.P. Ponting, F. Galibert, D.R. Smith, P.J. deJong, E. Kirkness, P. Alvarez, T. Biagi, W. Brockman, J. Butler, C.W. Chin, A. Cook, J. Cuff, M.J. Daly, D. DeCaprio, S. Gnerre, M. Grabherr, M. Kellis, M. Kleber, C. Bardeleben, L. Goodstadt, A. Heger, C. Hitte, L. Kim, K.P. Kopfli, H.G. Parker, J.P. Pollinger, S.M.J. Searle, N.B. Sutter, R. Thomas, C. Webber, and E.S. Lander, “Genome Sequence, Comparative Analysis and Haplotype Structure of the Domestic Dog,” Nature, vol. 438, no. 7069, pp. 803819, , 2005.
[7] ENCODE Project Consortium, “The ENCODE (ENCyclopedia of DNA Elements) Project,” Science, vol. 306, no. 5696, pp. 636640, 2004.
[8] R. Agarwala and D. FernandezBaca, “A PolynomialTime Algorithm for the Perfect Phylogeny Problem When the Number of Character States Is Fixed,” SIAM J. Computing, vol. 23, pp. 12161224, 1994.
[9] D. Gusfield, “Efficient Algorithms for Inferring Evolutionary Trees,” Networks, vol. 21, pp. 1928, 1991.
[10] S. Kannan and T. Warnow, “A Fast Algorithm for the Computation and Enumeration of Perfect Phylogenies,” SIAM J. Computing, vol. 26, pp. 17491763, 1997.
[11] H.J. Bandelt, P. Forster, B.C. Sykes, and M.B. Richards, “Mitochondrial Portraits of Human Populations Using Median Networks,” Genetics, vol. 141, pp. 743753, 1989.
[12] J. Felsenstein, “PHYLIP (Phylogeny Inference Package) Version3.6,” distributed by the author, Dept. of Genome Sciences, Univ. of Washington, 2005.
[13] N. Saitou and M. Nei, “The NeighborJoining Method: A New Method for Reconstructing Phylogenetic Trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406425, 1987.
[14] G.E. Blelloch, K. Dhamdhere, E. Halperin, R. Ravi, R. Schwartz, and S. Sridhar, “Fixed Parameter Tractability of Binary NearPerfect Phylogenetic Tree Reconstruction,” Proc. 33rd Int'l Colloquium Automata, Languages and Programming (ICALP '06), pp.667689, 2006.
[15] D. FernandezBaca and J. Lagergren, “A PolynomialTime Algorithm for NearPerfect Phylogeny,” SIAM J. Computing, vol. 32, pp.11151127, 2003.
[16] S. Sridhar, G.E. Blelloch, R. Ravi, and R. Schwartz, “Optimal Imperfect Phylogeny Reconstruction and Haplotyping,” Proc. Computational Systems Bioinformatics Conf. (CSB '06), pp. 199210, 2006.
[17] S. Sridhar, K. Dhamdhere, G.E. Blelloch, E. Halperin, R. Ravi, and R. Schwartz, “Simple Reconstruction of Binary NearPerfect Phylogenetic Trees,” Proc. Int'l Workshop Bioinformatics Research and Applications (IWBRA), 2006.
[18] D. Gusfield, “Haplotyping by Pure Parsimony,” Proc. 14th Symp. Combinatorial Pattern Matching (CPM '03), pp. 144155, 2003.
[19] Steiner Trees in Industry, X. Cheng and D.Z. Zu, eds., Springer, 2002.
[20] F.K. Hwang, D.S. Richards, and P. Winter, “The Steiner Minimum Tree Problems,” Annals of Discrete Math., vol. 53, 1992.
[21] L.R. Foulds and R.L. Graham, “The Steiner Problem in Phylogeny Is NPComplete,” Advances in Applied Math., vol. 3, 1982.
[22] P. Buneman, “The Recovery of Trees from Measures of Dissimilarity,” Math. in the Archeological and Historical Sciences, F. Hodson et al., eds., pp. 387395, 1971.
[23] J. Barthélemy, “From Copair Hypergraphs to Median Graphs with Latent Vertices,” Discrete Math, vol. 76, pp. 928, 1989.
[24] C. Semple and M. Steel, Phylogenetics. Oxford Univ. Press, 2003.
[25] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph, “Haplotyping as Perfect Phylogeny: A Direct Approach,” J. Computational Biology, vol. 10, pp. 323340, 2003.
[26] D. Gusfield and V. Bansal, “A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters,” Proc. Ninth Int'l Conf. Research in Computational Molecular Biology (RECOMB '05), pp. 217232, 2005.
[27] J. Beasley, “An Algorithm for the Steiner Problem in Graphs,” Networks, vol. 14, pp. 147159, 1984.
[28] N. Maculan, “The Steiner Problem in Graphs,” Annals of Discrete Math., vol. 31, pp. 185212, 1987.
[29] R. Wong, “A Dual Ascent Approach for Steiner Tree Problems on a Directed Graph,” Math. Programming, vol. 28, pp. 271287, 1984.
[30] A.C. Stone, R.C. Griffiths, S.L. Zegura, and M.F. Hammer, “High Levels of YChromosome Nucleotide Diversity in the Genus Pan,” Proc. Nat'l Academy of Sciences, vol. 99, pp. 4348, 2002.
[31] T. Wirth, X. Wang, B. Linz, R.P. Novick, J.K. Lum, M. Blaser, G. Morelli, D. Falush, and M. Achtman, “Distinguishing Human Ethnic Groups by Means of Sequences from Helicobacter Pylori: Lessons from Ladakh,” Proc. Nat'l Academy of Sciences, vol. 101, no. 14, pp. 47464751, 2004.
[32] S. Sharma, A. Saha, E. Rai, A. Bhat, and R. Bamezai, “Human mtDNA Hypervariable Regions, HVR I and II, Hint at Deep Common Maternal Founder and Subsequent Maternal Gene Flow in Indian Population Groups,” Am. J. Human Genetics, vol. 50, pp.497506, 2005.
[33] C.J. Lewis, R. Tito, B. Lizarraga, and A. Stone, “Land, Language, and Loci: mtDNA in Native Americans and the Genetic History of Peru,” Am. J. Physical Anthropology, vol. 127, pp. 351360, 2005.
[34] A. Helgason, G. Palsson, H.S. Pedersen, E. Angulalik, E.D. Gunnarsdottir, B. Yngvadottir, and K. Stefansson, “mtDNA Variation in Inuit Populations of Greenland and Canada: Migration History and Population Structure,” Am. J. Physical Anthropology, vol. 130, pp. 123134, 2006.
[35] M. Merimaa, M. Liivak, E. Heinaru, J. Truu, and A. Heinaru, “Functional CoAdaption of Phenol Hydroxylase and Catechol 2,3Dioxygenase Genes in Bacteria Possessing Different Phenol and pCresol Degradation Pathways,” Proc. Eighth Symp. Bacterial Genetics and Ecology (BAGECO '05), vol. 31, pp. 185212, 2005.
[36] S. Sridhar, F. Lam, G. Blelloch, R. Ravi, and R. Schwartz, “Efficiently Finding the Most Parsimonious Phylogenetic Tree via Linear Programming,” Proc. Int'l Symp. Bioinformatics Research and Applications (ISBRA '07), pp. 3748, 2007.