
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Sebastian B?cker, Veli M?kinen, "Combinatorial Approaches for Mass Spectra Recalibration," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 5, no. 1, pp. 91100, JanuaryMarch, 2008.  
BibTex  x  
@article{ 10.1109/tcbb.2007.1077, author = {Sebastian B?cker and Veli M?kinen}, title = {Combinatorial Approaches for Mass Spectra Recalibration}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {5}, number = {1}, issn = {15455963}, year = {2008}, pages = {91100}, doi = {http://doi.ieeecomputersociety.org/10.1109/tcbb.2007.1077}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Combinatorial Approaches for Mass Spectra Recalibration IS  1 SN  15455963 SP91 EP100 EPD  91100 A1  Sebastian B?cker, A1  Veli M?kinen, PY  2008 KW  biotechnology KW  mass spectrometry KW  combinatorial pattern matching KW  computational geometry VL  5 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] W.J. Henzel, C. Watanabe, and J.T. Stults, “Protein Identification: The Origins of Peptide Mass Fingerprints,” J. Am. Soc. Mass Spectrometry, vol. 14, pp. 931942, 2003.
[2] R. Matthiesen, M.B. Trelle, P. Hojrup, J. Bunkenborg, and O.N. Jensen, “VEMS 3.0: Algorithms and Computational Tools for Tandem Mass Spectrometry Based Identification of Post_Translational Modifications in Proteins,” J Proteome Research, vol. 4, no. 6, pp. 23382347, http://dx.doi.org/10.1021pr050264q, 2005.
[3] B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. DohertyKirby, and G. Lajoie, “PEAKS: Powerful Software for Peptide de Novo Sequencing by Tandem Mass Spectrometry,” Rapid Comm. Mass Spectrometry, vol. 17, no. 20, pp. 23372342, 2003.
[4] B.L. Adam, Y. Qu, J.W. Davis, M.D. Ward, M.A. Clements, L.H. Cazares, O.J. Semmes, P.F. Schellhammer, Y. Yasui, Z. Feng, and G.L. Wright Jr., “Serum Protein Fingerprinting Coupled with a PatternMatching Algorithm Distinguishes Prostate Cancer from Benign Prostate Hyperplasia and Healthy Men,” Cancer Research, vol. 62, pp. 36093614, 2002.
[5] J. Gobom, M. Mueller, V. Egelhofer, D. Theiss, H. Lehrach, and E. Nordhoff, “A Calibration Method that Simplifies and Improves Accurate Determination of Peptide Molecular Masses by MALDITOF MS,” Analytical Chemistry, vol. 74, no. 15, pp. 39153923, 2002.
[6] K.A. Baggerly, J.S. Morris, and K.R. Coombes, “Reproducibility of SELDITOF Protein Patterns in Serum: Comparing Datasets from Different Experiments,” Bioinformatics, vol. 20, no. 5, pp. 777785, 2004.
[7] O.J. Semmes, Z. Feng, B.L. Adam, L.L. Banez, W.L. Bigbee, D. Campos, L.H. Cazares, D.W. Chan, W.E. Grizzle, E. Izbicka, J. Kagan, G. Malik, D. McLerran, J.W. Moul, A. Partin, P. Prasanna, J. Rosenzweig, L.J. Sokoll, S. Srivastava, S. Srivastava, I. Thompson, M.J. Welsh, N. White, M. Winget, Y. Yasui, Z. Zhang, and L. Zhu, “Evaluation of Serum Protein Profiling by SurfaceEnhanced Laser Desorption/Ionization TimeofFlight Mass Spectrometry for the Detection of Prostate Cancer: I. Assessment of Platform Reproducibility,” Clinical Chemistry, vol. 51, pp. 102112, 2005.
[8] M.W. Bern and D. Goldberg, “EigenMS: De Novo Analysis of Peptide Tandem Mass Spectra by Spectral Graph Partitioning,” Proc. Ann. Int'l Conf. Research in Computational and Molecular Biology (RECOMB '05), vol. 3500, pp. 357372, 2005.
[9] E. Cheney, An Introduction to Approximation Theory, second ed., reprint of 1982 ed. Am. Math. Soc., 2000.
[10] J.W. Wong, G. Cagney, and H.M. Cartwright, “SpecAlignProcessing and Alignment of Mass Spectra Datasets,” Bioinformatics, vol. 21, no. 9, pp. 20882090, 2005.
[11] W.E. Wolski, M. Lalowski, P. Jungblut, and K. Reinert, “Calibration of Mass Spectrometric Peptide Mass Fingerprint Data without Specific External or Internal Calibrants,” BMC Bioinformatics, vol. 6, p. 203, 2005.
[12] N. Jeffries, “Algorithms for Alignment of Mass Spectrometry Proteomic Data,” Bioinformatics, vol. 21, no. 14, pp. 30663073, 2005.
[13] R. Matthiesen, J. Bunkenborg, A. Stensballe, O.N. Jensen, K.G. Welinder, and G. Bauw, “DatabaseIndependent, DatabaseDependent, and Extended Interpretation of Peptide Mass Spectra in VEMS V2.0,” Proteomics, vol. 4, no. 9, pp. 25832593, , Sept. 2004.
[14] A. Wool and Z. Smilansky, “Precalibration of MatrixAssisted Laser Desorption/IonizationTime of Flight Spectra for Peptide Mass Fingerprinting,” Proteomics, vol. 2, no. 10, pp. 13651373, , 2002.
[15] K.R. Clauser, P. Baker, and A.L. Burlingame, “Role of Accurate Mass Measurement ($+/$ 10 ppm) in Protein Identification Strategies Employing MS or MS/MS and Database Searching,” Analytical Chemistry, vol. 71, no. 14, pp. 28712882, July 1999.
[16] V. Egelhofer, K. Büssow, C. Luebbert, H. Lehrach, and E. Nordhoff, “Improvements in Protein Identification by MALDITOFMS Peptide Mapping,” Analytical Chemistry, vol. 72, no. 13, pp.27412750, July 2000.
[17] T.J. Rivlin, An Introduction to the Approximation of Functions, reprint of 1969 ed. Dover, 1981.
[18] S. Chattopadhyay and P. Das, “The $K{\hbox{}}{\rm{Dense}}$ Corridor Problems,” Pattern Recognition Letters, vol. 11, no. 7, pp. 463469, 1990.
[19] F.Y. Chin, C.A. Wang, and F.L. Wang, “Maximum Stabbing Line in 2D Plane,” Proc. Ann. Int'l Conf. Computing and Combinatorics (COCOON '99), vol. 1627, pp. 379388, 1999.
[20] K.Q. Brown, “Geometric Transforms for Fast Geometric Algorithms,” Report CMUCS80101, Dept. of Computer Science, Carnegie Mellon Univ., 1980.
[21] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry: Algorithms and Applications, second ed. Springer, 2000.
[22] D.L. Souvaine and J.M. Steele, “Time and SpaceEfficient Algorithms for Least Median of Squares Regression,” J. Am. Statistical Assoc., vol. 82, no. 399, pp. 794801, 1987.
[23] H. Edelsbrunner and D.L. Souvaine, “Computing Least Median of Squares Regression Lines and Guided Topological Sweep,” J. Am. Statistical Assoc., vol. 85, no. 409, pp. 115119, 1990.
[24] H. Edelsbrunner and L.J. Guibas, “Topologically Sweeping an Arrangement,” J. Computer and System Sciences, vol. 38, no. 1, pp.165194, 1989.
[25] E. Rafalin, S. Souvaine, and I. Streinu, “Topological Sweep in Degenerate Cases,” Proc. Fourth Workshop Algorithm Eng. and Experiments (ALENEX '02), vol. 2409, pp. 577588, 2002.
[26] P.J. Rousseeuw, “Least Median of Squares Regression,” J. Am. Statistical Assoc., 1984.
[27] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl, “Congruence, Similarity and Symmetries of Geometric Objects,” Discrete and Computational Geometry, vol. 3, no. 3, pp. 237256, 1988.
[28] R. Karp and S. Li, “Two Special Cases of the Assignment Problem,” Discrete Math., vol. 13, no. 2, pp. 129142, 1975.
[29] J. Colannino, M. Damian, F. Hurtado, J. Iacono, H. Meijer, S. Ramaswami, and G. Toussaint, “An $O(n\log n)\hbox{}{\rm Time}$ Algorithm for the Restriction Scaffold Assignment Problem,” J. Computational Biology, vol. 13, no. 4, pp. 979989, http://dx.doi.org/10.1002/pmic.200300792http:/ /dx.doi.org/3.0.CO;29http://www.liebertonline.com/ doi/abs/10.1089cmb.2006.13.979 , 2006.
[30] Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, D. Sankoff and J.B. Kruskal, eds. AddisonWesley, 1983.
[31] E. Rafalin,“LMS Regression Using Guided Topological Sweep in Degenerate Cases,” http://www.cs.tufts.edu/research/geometry lms/, 2002.
[32] M. Lefmann, C. Honisch, S. Boecker, N. Storm, F. von Wintzingerode, C. Schloetelburg, A. Moter, D. van den Boom, and U.B. Goebel, “A Novel Mass Spectrometry Based Tool for Genotypic Identification of Mycobacteria,” J. Clinical Microbiology, vol. 42, no. 1, pp. 339346, 2004.
[33] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory. WileyInterscience, 1990.
[34] C.A. Taatjes, N. Hansen, A. McIlroy, J.A. Miller, J.P. Senosiain, S.J. Klippenstein, F. Qi, L. Sheng, Y. Zhang, T.A. Cool, J. Wang, P.R. Westmoreland, M.E. Law, T. Kasper, and K. KohseHöinghaus, “Enols Are Common Intermediates in Hydrocarbon Oxidation,” Science, vol. 308, no. 5730, pp. 18871889, 2005.