
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Diego Rother, Guillermo Sapiro, Vijay Pande, "Statistical Characterization of Protein Ensembles," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 5, no. 1, pp. 4255, JanuaryMarch, 2008.  
BibTex  x  
@article{ 10.1109/TCBB.2007.1061, author = {Diego Rother and Guillermo Sapiro and Vijay Pande}, title = {Statistical Characterization of Protein Ensembles}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {5}, number = {1}, issn = {15455963}, year = {2008}, pages = {4255}, doi = {http://doi.ieeecomputersociety.org/10.1109/TCBB.2007.1061}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Statistical Characterization of Protein Ensembles IS  1 SN  15455963 SP42 EP55 EPD  4255 A1  Diego Rother, A1  Guillermo Sapiro, A1  Vijay Pande, PY  2008 KW  protein ensembles KW  density estimation KW  Bayesian networks KW  graphical models KW  maximum likelihood KW  crossvalidation KW  bootstrapping VL  5 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] K. LindorffLarsen, R.B. Best, M.A. DePristo, C.M. Dobson, and M. Vendruscolo, “Simultaneous Determination of Protein Structure and Dynamics,” Nature, vol. 433, pp. 128132, 2005.
[2] N. Furnham, T.L. Blundell, M.A. DePristo, and T.C. Terwilliger, “Correspondence: Is One Solution Good Enough,” Nature Structural and Molecular Biology, vol. 13, pp. 184185, Mar. 2006.
[3] A.Y. Grosberg and A.R. Khoklov, Statistical Physics of Macromolecules. AIP Press, 1994.
[4] J.E. Kohn, I.S. Millett, J. Jacob, B. Zagrovic, T.M. Dillon, N. Cingel, R.S. Dothager, S. Seifert, P. Thiyagarajan, T.R. Sosnick, M.Z. Hasan, V.S. Pande, I. Ruczinski, S. Doniach, and K.W. Plaxco, “RandomCoil Behavior and the Dimensions of Chemically Unfolded Proteins,” Proc. Nat'l Academy of Sciences, vol. 101, pp.1249112496, 2004.
[5] W. Rieping, M. Habeck, and M. Nilges, “Inferential Structure Determination,” Science, vol. 309, pp. 303306, 2005.
[6] B. Zagrovic, C.D. Snow, S. Khalid, M.R. Shirts, and V.S. Pande, “NativeLike Mean Structure in the Unfolded Ensemble of Small Proteins,” J. Molecular Biology, vol. 323, pp. 153164, 2002.
[7] D. Shortle, K.T. Simons, and D. Baker, “Clustering of LowEnergy Conformations Near the Native Structures of Small Proteins,” Proc. Nat'l Academy of Sciences, vol. 95, pp. 1115811162, 1998.
[8] P. Bradley, K.M.S. Misura, and D. Baker, “Toward HighResolution de Novo Structure Prediction for Small Proteins,” Science, vol. 309, pp. 18681871, 2005.
[9] V.S. Pande, Folding@Home Distributed Computing, Stanford Univ., http:/folding.stanford.edu/, 2005.
[10] D. Baker, The Baker Laboratory, http:/www.bakerlab.org/, 2003.
[11] S.J. Teague, “Implications of Protein Flexibility for Drug Discovery,” Nature Rev. Drug Discovery, vol. 2, pp. 527541, 2003.
[12] C. Branden and J. Tooze, Introduction to Protein Structure. Garland Publishing, 1998.
[13] D. Rother, G. Sapiro, and V. Pande, “Statistical Characterization of Protein Ensembles,” Proc. Ann. Int'l Conf. Research in Computational Molecular Biology (RECOMB '05), pp. 297298, 2005.
[14] R.E. Neapolitan, Learning Bayesian Networks, p. 674. Pearson Prentice Hall, 2004.
[15] M.I. Jordan, Learning in Graphical Models. Kluwer Academic Publishers, 1998.
[16] M. Teyssier and D. Koller, “OrderingBased Search: A Simple and Effective Algorithm for Learning Bayesian Networks,” Proc. Conf. Uncertainty in Artificial Intelligence (UAI '05), pp. 584590, 2005.
[17] G.E. Hinton, “Training Products of Experts by Minimizing Contrastive Divergence,” Neural Computation, vol. 14, pp. 17711800, 2002.
[18] G. Seroussi, personal communication, 2006.
[19] H. Akaike, “A New Look at the Statistical Model Identification,” IEEE Trans. Automatic Control, vol. 19, pp. 716723, 1974.
[20] K.P. Burnham and D.R. Anderson, Model Selection and Inference: A Practical Information—Theoretic Approach, p. 353. Springer, 1998.
[21] J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.
[22] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, p. 536. Springer, 2001.
[23] S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, vol. 1. Prentice Hall, 1993.
[24] P.A. Viola, “Alignment by Maximization of Mutual Information,” PhD dissertation, MIT, 1995.
[25] T.M. Cover and J.A. Thomas, Elements of Information Theory. John Wiley & Sons, 1991.
[26] B.W. Silverman, Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.
[27] K.V. Mardia and P.E. Jupp, Directional Statistics. John Wiley & Sons, 2000.
[28] B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap. Chapman and Hall, 1993.
[29] R.C.H. Cheng, “Bootstrap Methods in Computer Simulation Experiments,” Proc. 1995 Winter Simulation Conf., pp. 171177, 1995.
[30] C.D. Snow, L. Qiu, D. Du, F. Gai, S.J. Hagen, and V.S. Pande, “Trp Zipper Folding Kinetics by Molecular Dynamics and Temperature—Jump Spectroscopy,” Proc. Nat'l Academy of Sciences, vol. 101, pp. 40774082, 2004.
[31] B. Zagrovic, C.D. Snow, M.R. Shirts, and V.S. Pande, “Simulation of Folding of a Small AlphaHelical Protein in Atomistic Detail Using WorldwideDistributed Computing,” J. Molecular Biology, vol. 323, pp. 927937, 2002.
[32] C.L. Brooks, M. Karplus, and B. Montgomery Pettitt, Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, vol. 71, p. 259. WileyInterscience, 1988.
[33] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne, “The Protein Data Bank,” Nucleic Acids Research, vol. 28, pp. 235242, 2000.
[34] J. McKnight McKnight Lab PDB Files, http://people.bu.edu/cjmckpdb.htm, 2005.
[35] A. Elgammal, R. Duraiswami, and L.S. Davis, “Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Color Modeling and Tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 11, pp. 14991504, Nov. 2003.
[36] A.G. Gray and A.W. Moore, “Nonparametric Density Estimation: Toward Computational Tractability,” Proc. SIAM Int'l Conf. Data Mining, 2003.
[37] J. Beirlant, E.J. Dudewicz, L. Györfi, and E.C. Van der Meulen, “Nonparametric Entropy Estimation: An Overview,” Int'l J. Math. and Statistical Sciences, vol. 6, pp. 1740, 1997.