The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - October-December (2007 vol.4)
pp: 572-582
ABSTRACT
Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.
CITATION
Jinmiao Chen, Narendra Chaudhari, "Cascaded Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.4, no. 4, pp. 572-582, October-December 2007, doi:10.1109/tcbb.2007.1055
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool