
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Gergely Korodi, Ioan Tabus, "Compression of Annotated Nucleotide Sequences," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4, no. 3, pp. 447457, JulySeptember, 2007.  
BibTex  x  
@article{ 10.1109/tcbb.2007.1017, author = {Gergely Korodi and Ioan Tabus}, title = {Compression of Annotated Nucleotide Sequences}, journal ={IEEE/ACM Transactions on Computational Biology and Bioinformatics}, volume = {4}, number = {3}, issn = {15455963}, year = {2007}, pages = {447457}, doi = {http://doi.ieeecomputersociety.org/10.1109/tcbb.2007.1017}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE/ACM Transactions on Computational Biology and Bioinformatics TI  Compression of Annotated Nucleotide Sequences IS  3 SN  15455963 SP447 EP457 EPD  447457 A1  Gergely Korodi, A1  Ioan Tabus, PY  2007 KW  4 [Data]: Coding and Information Theory  Data compaction and compression KW  F.4 [Theory of Computation]: Mathematical Logic and Formal Languages  Formal languages KW  G.3 [Mathematics of Computing]: Probability and Statistics  Markov processes KW  J.3 [Computer Applications]: Life and Medical Sciences  Biology and genetics KW  Annotation KW  Compression KW  Formal Grammars KW  Nucleotide sequences VL  4 JA  IEEE/ACM Transactions on Computational Biology and Bioinformatics ER   
[1] A. Apostolico and A.S. Fraenkel, “Robust Transmission of Unbounded Strings Using Fibonacci Representations,” IEEE Trans. Information Theory, vol. 33, no. 2, pp. 238245, 1987.
[2] A. Bookstein and S.T. Klein, “Compression, Information Theory and Grammars: A Unified Approach,” ACM Trans. Information Systems, vol. 8, no. 1, pp. 2749, 1990.
[3] R.D. Cameron, “Source Encoding Using Syntactic Information Source Models,” IEEE Trans. Information Theory, vol. 34, no. 4, pp.843850, 1988.
[4] X. Chen, S. Kwong, and M. Li, “A Compression Algorithm for DNA Sequences,” IEEE Eng. in Medicine and Biology, pp. 6166, July/Aug. 2001.
[5] X. Chen, M. Li, B. Ma, and J. Tromp, “DNACompress: Fast and Effective DNA Sequence Compression,” Bioinformatics, vol. 18, pp.16961698, 2002.
[6] J. Cheney, “Compressing XML with Multiplexed Hierarchical PPM Models,” Proc. Data Compression Conf. '01, pp. 163172, 2001.
[7] J.G. Cleary and I.H. Witten, “Data Compression Using Adaptive Coding and Partial String Matching,” IEEE Trans. Comm., vol. 32, no. 4, pp. 396402, 1984.
[8] G.V. Cormack and R.N. Horspool, “Data Compression Using Dynamic Markov Modelling,” Computer J., vol. 30, no. 6, pp. 541550, 1987.
[9] S. Grumbach and F. Tahi, “Compression of DNA Sequences,” Proc. Data Compression Conf. '93, pp. 340350, 1993.
[10] S. Grumbach and F. Tahi, “A New Challenge for Compression Algorithms: Genetic Sequences,” J. Information Processing and Management, vol. 30, no. 6, pp. 875886, 1994.
[11] J.C. Kieffer and E.H. Yang, “GrammarBased Codes: A New Class of Universal Lossless Source Codes,” IEEE Trans. Information Theory, vol. 46, no. 3, pp. 737754, 2000.
[12] G. Korodi and I. Tabus, “An Efficient Normalized Maximum Likelihood Algorithm for DNA Sequence Compression,” ACM Trans. Information Systems, vol. 23, no. 1, pp. 334, 2005.
[13] J.M. Lake, “Prediction by Grammatical Match,” Proc. Data Compression Conf. '00, pp. 153162, 2000.
[14] K. Lanctot, M. Li, and E. Yang, “Estimating DNA Sequence Entropy,” Proc. 11th Ann. ACMSIAM Symp. Discrete Algorithms, pp. 409418, 2000.
[15] H. Liefke and D. Suciu, “XMill: An Efficient Compressor for XML Data,” Proc. Special Interest Group on Management of Data '00, pp.153164, 2000.
[16] D. Loewenstern and P. Yianilos, “Significantly Lower Entropy Estimates for Natural DNA Sequences,” Proc. Data Compression Conf. '97, pp. 151160, 1997.
[17] E. Marsh and N. Sager, “Analysis and Processing of Compact Text,” Proc. Ninth Conf. Computational Linguistics, J. Horecký, ed., vol. 1, pp. 201206, 1982.
[18] T. Matsumoto, K. Sadakane, and H. Imai, “Biological Sequence Compression Algorithms,” Genome Informatics, vol. 11, pp. 4352, 2000.
[19] A. Moffat, “Implementing the PPM Data Compression Scheme,” IEEE Trans. Comm., vol. 38, no. 11, pp. 19171921, 1990.
[20] C.G. NevillManning and I.H. Witten, “Compression and Explanation Using Hierarchical Grammars,” Computer J., vol. 40, nos.2/3, pp. 103113, 1997.
[21] J. Rissanen and G. Langdon, “Arithmetic Coding,” IBM J. Research and Development, vol. 23, no. 2, pp. 149162, 1979.
[22] É. Rivals, J.P. Delahaye, M. Dauchet, and O. Delgrange, “A Guaranteed Compression Scheme for Repetitive DNA Sequences,” Technical Report IT285, LIFL Lille I Univ., 1995.
[23] D. Shkarin, “PPM: One Step to Practicality,” Proc. IEEE Data Compression Conf. '02, pp. 202211, 2002.
[24] L. Stein, “Genome Annotation: From Sequence to Biology,” Nature Reviews Genetics, vol. 2, no. 7, pp. 493503, 2001.
[25] I. Tabus, G. Korodi, and J. Rissanen, “DNA Sequence Compression Using the Normalized Maximum Likelihood Model for Discrete Regression,” Proc. Data Compression Conf. '03, pp. 253262, 2003.
[26] J. Tarhio, “On Compression of Parse Trees,” Proc. Eighth Symp. String Processing and Information Retrieval, pp. 205211, 2001.
[27] H.E. Williams and J. Zobel, “Compression of Nucleotide Databases for Fast Searching,” Computer Applications in the Biosciences, vol. 13, no. 5, pp. 549554, 1997.
[28] Nat'l Center for Biotechnology Information, http:/www. ncbi.nlm.nih.gov/, 2007.
[29] The DDBJ/EMBL/GenBank Feature Table: Definition, http://www.ncbi.nlm.nih.gov/projects/collab/ FTindex.html, 2007.